# Total Maximum Daily Loads of Fecal Bacteria for the Lower Monocacy River Basin in Carroll, Frederick, and Montgomery Counties, Maryland

# FINAL



DEPARTMENT OF THE ENVIRONMENT 1800 Washington Boulevard, Suite 540 Baltimore MD 21230-1718

Submitted to:

Water Protection Division U.S. Environmental Protection Agency, Region III 1650 Arch Street Philadelphia, PA 19103-2029

September 2009

EPA Submittal Date: September 27, 2007 EPA Approval Date: December 3, 2009

This page deliberately left blank.

## **Table of Contents**

| List of                           | f Figur                           | esiii                                           |
|-----------------------------------|-----------------------------------|-------------------------------------------------|
| List of                           | f Table                           | siv                                             |
| List of                           | f Abbro                           | eviations vi                                    |
| EXEC                              | CUTIV                             | E SUMMARY vii                                   |
| 1.0                               | INTR                              | ODUCTION1                                       |
| 2.0                               | SETT                              | ING AND WATER QUALITY DESCRIPTION               |
|                                   | 2.1                               | General Setting                                 |
|                                   | 2.2                               | Water Quality Characterization9                 |
|                                   | 2.3                               | Water Quality Impairment 13                     |
|                                   | 2.4                               | Source Assessment 18                            |
| 3.0                               | TAR                               | GETED WATER QUALITY GOAL                        |
| 4.0                               | TOTA                              | AL MAXIMUM DAILY LOADS AND SOURCE ALLOCATION 29 |
|                                   | 4.1                               | Overview                                        |
|                                   | 4.2                               | Analysis Framework 30                           |
|                                   | 4.3                               | Estimating Baseline Loads                       |
|                                   | 4.4                               | Critical Condition and Seasonality              |
|                                   | 4.5                               | Margin of Safety                                |
|                                   | 4.6                               | Scenario Descriptions                           |
|                                   | 4.7                               | TMDL Loading Caps 44                            |
|                                   | 4.8                               | TMDL Allocations 48                             |
|                                   | 4.9                               | Summary                                         |
| 5.0                               | ASSU                              | RANCE OF IMPLEMENTATION 55                      |
| REFE                              | RENC                              | ES                                              |
| Apper                             | ndix A                            | – Bacteria Data A1                              |
| <b>Apper</b><br>Lower I<br>Docume | ndix B -<br>Monocac<br>ent versio | - Flow Duration Curve Analysis to Define Strata |

| Appendix C – BST Report                                                            | C1 |
|------------------------------------------------------------------------------------|----|
| Appendix D – Estimating Maximum Daily Loads                                        | D1 |
| Appendix E – Relationship of Fecal Bacteria TMDLs for the Double Pipe Creek, Upper |    |
| Monocacy River, and Lower Monocacy River Watersheds                                | E1 |

# List of Figures

| Figure 2.1.1: Location Map of the Lower Monocacy River Basin                               | 4            |
|--------------------------------------------------------------------------------------------|--------------|
| Figure 2.1.2: Land Use of the Lower Monocacy River Watershed                               | 6            |
| Figure 2.1.3: Population Density in the Lower Monocacy River Basin                         | 8            |
| Figure 2.2.1: Monitoring Stations and Subwatersheds in the Lower Monocacy River Basin      | . 12         |
| Figure 2.3.1: Conceptual Diagram of Flow Duration Zones                                    | . 15         |
| Figure 2.4.1: Sanitary Sewer Service Areas and Septics in the Lower Monocacy River         |              |
| Watershed                                                                                  | . 20         |
| Figure 2.4.2: Sanitary Sewer Overflows Areas in the Lower Monocacy River Watershed         | . 22         |
| Figure 2.4.3: Permitted Point Sources Discharging Fecal Bacteria in the Lower Monocacy Riv | ver          |
| Watershed                                                                                  | . 25         |
| Figure 4.2.1: Diagram of Non-tidal Bacteria TMDL Analysis Framework                        | . 31         |
| Figure A-1: E. coli Concentration vs. Time for the Lower Monocacy River Monitoring Station | 1            |
| BEN0022                                                                                    | A8           |
| Figure A-2: E. coli Concentration vs. Time for the Lower Monocacy River Monitoring Station | 1            |
| BNG0005                                                                                    | A9           |
| Figure A-3: E. coli Concentration vs. Time for the Lower Monocacy River Monitoring Station | 1            |
| BSC0013                                                                                    | A9           |
| Figure A-4: E. coli Concentration vs. Time for the Lower Monocacy River Monitoring Station | 1            |
| CAR0001                                                                                    | <b>A</b> 10  |
| Figure A-5: E. coli Concentration vs. Time for the Lower Monocacy River Monitoring Station | 1            |
| ISR0022                                                                                    | <b>A</b> 10  |
| Figure A-6: E. coli Concentration vs. Time for the Lower Monocacy River Monitoring Station | 1            |
| LIN0005                                                                                    | 11           |
| Figure A-7: E. coli Concentration vs. Time for the Lower Monocacy River Monitoring Station | 1            |
| LIN0072                                                                                    | 11           |
| Figure A-7: E. coli Concentration vs. Time for the Lower Monocacy River Monitoring Station | 1            |
| MON0004                                                                                    | <b>A</b> 12  |
| Figure A-7: E. coli Concentration vs. Time for the Lower Monocacy River Monitoring Station | 1            |
| MON0155                                                                                    | 12           |
| Figure B-1: Lower Monocacy River Flow Duration Curves                                      | .B2          |
| Figure B-2: E. coli Concentration vs. Flow Duration for the Lower Monocacy River Monitorir | ng           |
| Station BEN0022                                                                            | .B5          |
| Figure B-3: E. coli Concentration vs. Flow Duration for the Lower Monocacy River Monitorir | ng           |
| Station BNG0005                                                                            | .B5          |
| Figure B-4: E. coli Concentration vs. Flow Duration for the Lower Monocacy River Monitorir | ng           |
| Station BSC0013                                                                            | . <b>B</b> 6 |
| Figure B-5: E. coli Concentration vs. Flow Duration for the Lower Monocacy River Monitorir | ng           |
| Station CAR0001                                                                            | .B6          |
| Figure B-6: E. coli Concentration vs. Flow Duration for the Lower Monocacy River Monitorir | ng           |
| Station ISR0022                                                                            | .B7          |
| Figure B-7: E. coli Concentration vs. Flow Duration for the Lower Monocacy River Monitorir | ng           |
| Station LIN0005                                                                            | . <b>B</b> 7 |
| Figure B-8: E. coli Concentration vs. Flow Duration for the Lower Monocacy River Monitorir | ng           |
| Station LIN0072                                                                            | .B8          |
|                                                                                            |              |

#### List of Tables

| Table 2.1.1: Land Use Percentage Distribution for the Lower Monocacy River Basin                                  | 5 |
|-------------------------------------------------------------------------------------------------------------------|---|
| Table 2.1.2: Number of Dwellings Per Acre                                                                         | 7 |
| Table 2.1.3: Total Population Per Subwatershed in the Lower Monocacy River Watershed                              | 7 |
| Table 2.2.1: Historical Monitoring Data in the Lower Monocacy River Watershed 1                                   | 0 |
| Table 2.2.2: Location of DNR (CORE) Monitoring Station in the Lower Monocacy River                                |   |
| Watershed                                                                                                         | 0 |
| Table 2.2.3: Locations of MDE Monitoring Stations in the Lower Monocacy River Watershed1                          | 0 |
| Table 2.2.4: Locations of USGS Gauging Stations in the Lower Monocacy River Watershed 1                           | 1 |
| Table 2.3.1: Bacteria Criteria Values from Table 1 COMAR 26.08.02.03-3 Water Quality                              |   |
| Criteria Specific to Designated Uses.                                                                             | 3 |
| Table 2.3.2: Weighting Factors for Average Hydrology Year Used for Estimation of Geometric                        |   |
| Means in the Lower Monocacy River Watershed.                                                                      | 5 |
| Table 2.3.3: Lower Monocacy River Annual Steady-State Geometric Means by Stratum per                              |   |
| Subwatersheds                                                                                                     | 7 |
| Table 2.3.4: Lower Monocacy River Seasonal (May 1 <sup>st</sup> -September 30 <sup>th</sup> ) Period Steady-State |   |
| Geometric Means by Stratum per Subwatersheds                                                                      | 8 |
| Table 2.4.1: Septic Systems and Households Per Subwatershed in the Lower Monocacy River                           |   |
| Watershed                                                                                                         | 9 |
| Table 2.4.2: NPDES Permit Holders with Permits Regulating Fecal Bacteria Discharge in the                         |   |
| Lower Monocacy River Watershed                                                                                    | 4 |
| Table 2.4.3: Distribution of Fecal Bacteria Source Loads in the Lower Monocacy River Basin                        |   |
| for the Annual Period                                                                                             | 7 |
| Table 2.4.4: Distribution of Fecal Bacteria Source Loads in the Lower Monocacy River Basin                        |   |
| for the Seasonal Period (May 1 <sup>st</sup> – September 30 <sup>th</sup> )                                       | 8 |
| Table 4.3.1: Baseline Loads Calculations   3                                                                      | 6 |
| Table 4.4.1. Hydrological Conditions Used to Account for Critical Condition and Seasonality 3                     | 7 |
| Table 4.4.2: Required Reductions of Fecal Bacteria to Meet Water Quality Standards 3                              | 8 |
| Tuore 1. 1.2. Required Reductions of Fear Ductoria to theor mater Quanty Dunidards                                | 0 |

| Table 4.6.1: Bacteria Source Distributions and Corresponding Baseline Loads Used in the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| TMDL Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 40                                                                                                                                       |
| Table 4.6.2: Maximum Practicable Reduction Targets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 41                                                                                                                                       |
| Table 4.6.3: Practicable Reduction Scenario Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 43                                                                                                                                       |
| Table 4.6.4:         TMDL Scenario Results: Percent Reductions Based on Optimization Model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                          |
| Allowing Up to 98% Reduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 44                                                                                                                                       |
| Table 4.7.1: Lower Monocacy River Subwatersheds Annual Average TMDL Loading Caps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 45                                                                                                                                       |
| Table 4.7.2: TMDL Loading Caps by Source Category - Annual Average Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 46                                                                                                                                       |
| Table 4.7.3: Lower Monocacy River Watershed Maximum Daily Loads Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 48                                                                                                                                       |
| Table 4.8.1: Potential Source Contributions for TMDL Allocations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 49                                                                                                                                       |
| Table 4.8.2: Annual Average Stormwater Allocations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 51                                                                                                                                       |
| Table 4.9.1: Lower Monocacy River Watershed TMDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 52                                                                                                                                       |
| Table 4.9.2: Lower Monocacy River Watershed Maximum Daily Loads                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 53                                                                                                                                       |
| Table 4.9.3: Lower Monocacy River Watershed Annual Average TMDL Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 53                                                                                                                                       |
| Table 4.9.4: Lower Monocacy River Watershed Annual Average MDL Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 54                                                                                                                                       |
| Table A-1: Measured Bacteria Concentration with Daily Flow Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A1                                                                                                                                       |
| Table B-1: USGS Gauges in the Lower Monocacy River Watershed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | B1                                                                                                                                       |
| Table B-2: Definition of Flow Regimes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | B3                                                                                                                                       |
| Table B-3: Weighting Factors for Estimation of Geometric Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | B4                                                                                                                                       |
| Table C-1: Antibiotics and concentrations used for ARA.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C5                                                                                                                                       |
| Table C-2: Lower Monocacy River. Category, total number, and number of unique patterns in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                        |
| the Lower Monocacy portion and in the combined DOP-LMO UMO known-source librar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | y.                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C7                                                                                                                                       |
| Table C-3: Lower Monocacy Creek. Number of isolates not classified, percent unknown, and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | l                                                                                                                                        |
| percent correct for eight (8) threshold probabilities for LMO known source isolates using                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                          |
| the combined DOP-LMO-UMO known-source library                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C8                                                                                                                                       |
| Table  C-4: Lower Monocacy River. Actual species categories versus predicted categories, at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                          |
| 50% probability cutoff, with rates of correct classification (RCC) for each category                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C9                                                                                                                                       |
| Table C-5: Probable host source distribution of water isolates by species category, based on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                          |
| DOP-LMO-UMO combination library model with a 50% threshold probability                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 211                                                                                                                                      |
| Table C-6: Lower Monocacy River. Enterococcus isolates obtained from water collected during                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C11<br>ng                                                                                                                                |
| Table C-6: Lower Monocacy River. <i>Enterococcus</i> isolates obtained from water collected during the spring, summer, fall, and winter seasons, by monitoring station                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C11<br>ng<br>C11                                                                                                                         |
| <ul><li>Table C-6: Lower Monocacy River. <i>Enterococcus</i> isolates obtained from water collected during the spring, summer, fall, and winter seasons, by monitoring station</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C11<br>ng<br>C11                                                                                                                         |
| <ul> <li>Table C-6: Lower Monocacy River. <i>Enterococcus</i> isolates obtained from water collected during the spring, summer, fall, and winter seasons, by monitoring station</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C11<br>ng<br>C11<br>C12                                                                                                                  |
| <ul> <li>Table C-6: Lower Monocacy River. <i>Enterococcus</i> isolates obtained from water collected during the spring, summer, fall, and winter seasons, by monitoring station.</li> <li>Table C-7: Lower Monocacy River. BST Analysis: Number of Isolates per Station per Date.</li> <li>Table C-8: Lower Monocacy River. BST Analysis: Percentage of Sources per Station per Date.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C11<br>ng<br>C11<br>C12<br>ate.                                                                                                          |
| <ul> <li>Table C-6: Lower Monocacy River. <i>Enterococcus</i> isolates obtained from water collected during the spring, summer, fall, and winter seasons, by monitoring station</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C11<br>ng<br>C11<br>C12<br>ate.<br>C14                                                                                                   |
| <ul> <li>Table C-6: Lower Monocacy River. <i>Enterococcus</i> isolates obtained from water collected during the spring, summer, fall, and winter seasons, by monitoring station.</li> <li>Table C-7: Lower Monocacy River. BST Analysis: Number of Isolates per Station per Date.</li> <li>Table C-8: Lower Monocacy River. BST Analysis: Percentage of Sources per Station per Date.</li> <li>Table D-1: Percentiles of Maximum Observed Bacteria Concentrations in the Lower Monocacy River.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                       | C11<br>ng<br>C11<br>C12<br>ate.<br>C12<br>ate.<br>C14                                                                                    |
| <ul> <li>Table C-6: Lower Monocacy River. <i>Enterococcus</i> isolates obtained from water collected during the spring, summer, fall, and winter seasons, by monitoring station</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C11<br>ng<br>C11<br>C12<br>ate.<br>C14<br>cy<br>D4                                                                                       |
| <ul> <li>Table C-6: Lower Monocacy River. <i>Enterococcus</i> isolates obtained from water collected during the spring, summer, fall, and winter seasons, by monitoring station</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C11<br>ng<br>C11<br>C12<br>ate.<br>C14<br>cy<br>D4<br>D6                                                                                 |
| <ul> <li>Table C-6: Lower Monocacy River. <i>Enterococcus</i> isolates obtained from water collected during the spring, summer, fall, and winter seasons, by monitoring station.</li> <li>Table C-7: Lower Monocacy River. BST Analysis: Number of Isolates per Station per Date.</li> <li>Table C-8: Lower Monocacy River. BST Analysis: Percentage of Sources per Station per Date.</li> <li>Table D-1: Percentiles of Maximum Observed Bacteria Concentrations in the Lower Monocacy River Subwatersheds.</li> <li>Table D-2: Long-term Annual Average (LTA) TMDL Bacteria Concentrations</li></ul>                                                                                                                                                                                                                                                                                                                                          | <ul> <li>C11</li> <li>ng</li> <li>C11</li> <li>C12</li> <li>ate.</li> <li>C14</li> <li>cy</li> <li>D4</li> <li>D6</li> <li>D7</li> </ul> |
| <ul> <li>Table C-6: Lower Monocacy River. <i>Enterococcus</i> isolates obtained from water collected during the spring, summer, fall, and winter seasons, by monitoring station</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C11<br>ng<br>C11<br>C12<br>ate.<br>C14<br>cy<br>D4<br>D6<br>D7<br>D9                                                                     |
| <ul> <li>Table C-6: Lower Monocacy River. <i>Enterococcus</i> isolates obtained from water collected during the spring, summer, fall, and winter seasons, by monitoring station</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C11<br>ng<br>C11<br>C12<br>ate.<br>C14<br>C14<br>C14<br>C14<br>D6<br>D7<br>D9<br>D10                                                     |
| <ul> <li>Table C-6: Lower Monocacy River. <i>Enterococcus</i> isolates obtained from water collected during the spring, summer, fall, and winter seasons, by monitoring station</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C11<br>ng<br>C11<br>C12<br>ate.<br>C14<br>C14<br>C14<br>C14<br>D6<br>D7<br>D9<br>D10<br>D4                                               |
| <ul> <li>Table C-6: Lower Monocacy River. <i>Enterococcus</i> isolates obtained from water collected during the spring, summer, fall, and winter seasons, by monitoring station.</li> <li>Table C-7: Lower Monocacy River. BST Analysis: Number of Isolates per Station per Date.</li> <li>Table C-8: Lower Monocacy River. BST Analysis: Percentage of Sources per Station per Date.</li> <li>Table D-1: Percentiles of Maximum Observed Bacteria Concentrations in the Lower Monocacy River Subwatersheds.</li> <li>Table D-2: Long-term Annual Average (LTA) TMDL Bacteria Concentrations</li> <li>Table D-3: Maximum Daily Load (MDL) Concentrations.</li> <li>Table D-4: Maximum Daily Loads (MDL)</li> <li>Table D-5: Lower Monocacy River Watershed Maximum Daily Loads</li> <li>Table E-1: Fecal Bacteria Baseline Loads.</li> <li>Table E-2: Double Pipe Creek TMDL.</li> </ul>                                                        | C11<br>ng<br>C11<br>C12<br>ate.<br>C14<br>C14<br>C14<br>C14<br>D6<br>D7<br>D9<br>D10<br>D4<br>D4                                         |
| <ul> <li>Table C-6: Lower Monocacy River. <i>Enterococcus</i> isolates obtained from water collected during the spring, summer, fall, and winter seasons, by monitoring station.</li> <li>Table C-7: Lower Monocacy River. BST Analysis: Number of Isolates per Station per Date.</li> <li>Table C-8: Lower Monocacy River. BST Analysis: Percentage of Sources per Station per Date.</li> <li>Table D-1: Percentiles of Maximum Observed Bacteria Concentrations in the Lower Monocacy River Subwatersheds.</li> <li>Table D-2: Long-term Annual Average (LTA) TMDL Bacteria Concentrations</li> <li>Table D-3: Maximum Daily Load (MDL) Concentrations.</li> <li>Table D-4: Maximum Daily Loads (MDL)</li> <li>Table D-5: Lower Monocacy River Watershed Maximum Daily Loads</li> <li>Table E-1: Fecal Bacteria Baseline Loads.</li> <li>Table E-2: Double Pipe Creek TMDL.</li> <li>Table E-3: Upper Monocacy River TMDL Summary.</li> </ul> | C11<br>ng<br>C11<br>C12<br>ate.<br>C14<br>C14<br>C14<br>C14<br>D6<br>D7<br>D9<br>D10<br>D4<br>D4<br>D4                                   |

## List of Abbreviations

| ARCC    | Average rates of correct classification                 |  |  |
|---------|---------------------------------------------------------|--|--|
| ARA     | Antibiotic Resistance Analysis                          |  |  |
| BMP     | Best Management Practice                                |  |  |
| BST     | Bacteria Source Tracking                                |  |  |
| CAFO    | Confined Animal Feeding Operations                      |  |  |
| cfs     | Cubic Feet per Second                                   |  |  |
| CFR     | Code of Federal Regulations                             |  |  |
| CFU     | Colony Forming Units                                    |  |  |
| COMAR   | Code of Maryland Regulations                            |  |  |
| CSO     | Combined Sewer Overflow                                 |  |  |
| CSS     | Combined Sewer System                                   |  |  |
| CWA     | Clean Water Act                                         |  |  |
| CWP     | Center for Watershed Protection                         |  |  |
| DNR     | Department of Natural Resources                         |  |  |
| EPA     | Environmental Protection Agency                         |  |  |
| GIS     | Geographic Information System                           |  |  |
| LA      | Load Allocation                                         |  |  |
| MACS    | Maryland Agricultural Cost Share Program                |  |  |
| MDE     | Maryland Department of the Environment                  |  |  |
| MDP     | Maryland Department of Planning                         |  |  |
| MGD     | Millions of Gallons per Day                             |  |  |
| ml      | Milliliter(s)                                           |  |  |
| MOS     | Margin of Safety                                        |  |  |
| MPN     | Most Probable Number                                    |  |  |
| MPR     | Maximum Practicable Reduction                           |  |  |
| MS4     | Municipal Separate Storm Sewer System                   |  |  |
| MST     | Microbial Source Tracking                               |  |  |
| NPDES   | National Pollutant Discharge Elimination System         |  |  |
| NRCS    | National Resources Conservation Service                 |  |  |
| RCC     | Rates of Correct Classification                         |  |  |
| RESAC   | Mid-Atlantic Regional Earth Science Applications Center |  |  |
| SSO     | Sanitary Sewer Overflows                                |  |  |
| STATSGO | State Soil Geographic Database                          |  |  |
| TMDL    | Total Maximum Daily Load                                |  |  |
| USGS    | United States Geological Survey                         |  |  |
| WQIA    | Water Quality Improvement Act                           |  |  |
| WLA     | Wasteload Allocation                                    |  |  |
| WQLS    | Water Quality Limited Segment                           |  |  |
| WWTP    | Wastewater Treatment Plant                              |  |  |

### **EXECUTIVE SUMMARY**

This document, upon approval by the U.S. Environmental Protection Agency (EPA), establishes a Total Maximum Daily Load (TMDL) for fecal bacteria in the Lower Monocacy River watershed (basin number 02-14-03-02). Section 303(d) of the federal Clean Water Act (CWA) and the EPA's implementing regulations direct each state to identify and list waters, known as water quality limited segments (WQLSs), in which current required controls of a specified substance are inadequate to achieve water quality standards. For each WQLS, states are required to either establish a Total Maximum Daily Load (TMDL) of the specified substance that the waterbody can receive without violating water quality standards or demonstrate that water quality standards are being met.

The Maryland Department of the Environment (MDE) has identified the Lower Monocacy River on the State of Maryland's 303(d) List as impaired by the following (years listed in parentheses): fecal coliform (2002), nutrients (1996), sediments (1996) and impacts to biological communities (2002, 2004, and 2006). Lake Linganore, an impoundment within the Lower Monocacy River basin, was listed for nutrients and sediments in 1996. The Lower Monocacy River, upstream of US Route-40, and its tributary Israel Creek have been designated as Use IV-P waterbodies (Recreational Trout Waters and Public Water Supply). Downstream of Route US-40, the Lower Monocacy River is designated as a Use I-P waterbody (Water Contact Recreation, Protection of Aquatic Life and Public Water Supply). Additional tributaries of the Lower Monocacy River--Carroll Creek, Rocky Fountain Run, Little Bennett Creek, Furnace Branch, Ballenger Creek and Bear Branch--are designated as Use III-P waterbodies (Nontidal Cold Water and Public Water Supply). See Code of Maryland Regulations (COMAR) 26.08.02.08P. This document proposes to establish a TMDL for fecal bacteria in the Lower Monocacy River that will allow for attainment of the beneficial use designation of primary contact recreation. The listings for nutrients, sediments, and impacts to biological communities will be addressed separately at a future date. Phosphorus and sediment TMDLs for Lake Linganore were approved by EPA on March 13, 2003 to address the nutrient and sediment listings. A data solicitation for fecal bacteria was conducted by MDE in 2003, and all readily available data from the past five years were considered.

A separate fecal bacteria TMDL has been developed for the Upper Monocacy River watershed in another document, pending EPA approval. Because the Upper Monocacy flows into the Lower Monocacy, the Upper Monocacy River TMDL is accounted for herein as an upstream load allocation. Appendix E of this report provides further explanation of the upstream loads.

For this TMDL analysis, the Lower Monocacy River watershed has been divided into nine subwatersheds, which include the tributaries Carroll Creek, Israel Creek, Bush Creek, Ballenger Creek, Bennett Creek, and Linganore Creek (divided into two subwatersheds). The pollutant loads set forth in this document are for these nine subwatersheds. To establish baseline and allowable pollutant loads for this TMDL, a flow duration curve approach was employed, using flow strata estimated from United States Geological Survey (USGS) daily flow monitoring data and bacteria monitoring data. The sources of fecal bacteria are estimated at nine representative stations in the Lower Monocacy River watershed where samples were collected for one year. Multiple antibiotic resistance analysis (ARA) source tracking was used to determine the relative

proportion of domestic (pets and human associated animals), human (human waste), livestock (agriculture-related animals), and wildlife (mammals and waterfowl) source categories.

The allowable load is determined by estimating a baseline load from current monitoring data. The baseline load is estimated using a long-term geometric mean and weighting factors from the flow duration curve. The TMDL for fecal bacteria entering the Lower Monocacy River is established after considering three different hydrological conditions: high flow and low flow annual conditions, and an average seasonal condition (the period between May 1<sup>st</sup> and September 30<sup>th</sup> when water contact recreation is more prevalent). This allowable load is reported in units of Most Probable Number (MPN)/day and represents a long-term load estimated over a variety of hydrological conditions.

Two scenarios were developed, with the first assessing if attainment of current water quality standards could be achieved by applying maximum practicable reductions (MPRs), and the second applying higher reductions than MPRs. Scenario solutions were based on an optimization method where the objective was to minimize the overall risk to human health, assuming that the risk varies over the four bacteria source categories. In eight of the nine subwatersheds, it was estimated that water quality standards could not be attained with MPRs. Thus, for these subwatersheds, the second scenario with higher maximum reductions was applied. One of the subwatersheds in Linganore Creek could achieve water quality standards with MPRs.

The fecal bacteria long-term annual average TMDL for the Lower Monocacy River watershed, including the Upper Monocacy River upstream load allocation (LA<sub>UM</sub>), is 2,033,379 billion MPN *E. coli*/year. The TMDL allocation for the Lower Monocacy River MD 8-digit basin is 679,529 billion MPN *E. coli*/year, and represents a reduction of approximately 88.3 % from the baseline load of 5,783,325 billion MPN/year. The maximum daily load for the MD 8-digit basin is 14,048 billion MPN *E. coli*/day. The Lower Monocacy River MD 8-digit portion of the TMDL is distributed between a load allocation (LA<sub>LM</sub>) for nonpoint sources and waste load allocations (WLA<sub>LM</sub>) for point sources, including National Pollutant Elimination System (NPDES) wastewater treatment plants (WWTPs) and NPDES regulated stormwater discharges, including municipal separate storm sewer systems (MS4s).

The long-term annual average allocations are as follows: the LA<sub>LM</sub> is 426,161 billion MPN *E. coli*/year. The WWTP WLA<sub>LM</sub> is 57,327 billion MPN *E. coli*/year. The Stormwater WLA<sub>LM</sub> is 196,041 billion MPN *E. coli*/year. In addition to these allocation categories, the TMDL includes an upstream load allocation (LA<sub>UM</sub>) to account for the load from the Upper Monocacy River, equivalent to the Upper Monocacy River TMDL of 1,353,850 billion MPN *E. coli*/year. The margin of safety (MOS) has been incorporated using a conservative assumption by estimating the loading capacity of the stream based on a water quality endpoint concentration more stringent than the applicable MD water quality standard criterion. The *E. coli* water quality criterion concentration was reduced by 5%, from 126 MPN/100ml to 119.7 MPN/100ml.

The maximum daily loads for the Lower Monocacy MD 8-digit basin, estimated using predicted long-term annual average TMDL concentrations (after source controls), are allocated as follows:

the LA<sub>LM</sub> is 8,471 billion MPN *E. coli*/day, the Stormwater WLA<sub>LM</sub> is 5,088 billion MPN *E. coli*/day, and the WWTP WLA<sub>LM</sub> is 488 billion MPN *E. coli*/day.

Once EPA has approved a TMDL, and it is known what measures must be taken to reduce pollution levels, implementation of best management practices (BMPs) is expected to take place. MDE intends for the required reductions to be implemented in an iterative process that first addresses those sources with the largest impacts to water quality and creating the greatest risks to human health, with consideration given to ease and cost of implementation. In addition, follow-up monitoring plans will be established to track progress and to assess the implementation efforts. As previously stated, water quality standards cannot be attained in eight of the nine Lower Monocacy River subwatersheds, using the MPR scenario. MPRs may not be sufficient in subwatersheds where wildlife is a significant component or where very high reductions of fecal bacteria loads are required to meet water quality standards. In these cases, it is expected that the MPR scenario will be the first stage of TMDL implementation. Progress will be made through the iterative implementation process described above, and the situation will be reevaluated in the future.

## 1.0 INTRODUCTION

This document, upon approval by the U.S. Environmental Protection Agency (EPA), establishes a Total Maximum Daily Load (TMDL) for fecal bacteria in the Lower Monocacy River (basin number 02-14-03-02). Section 303(d)(1)(C) of the federal Clean Water Act (CWA) and the U.S. Environmental Protection Agency's (EPA) implementing regulations direct each state to develop a TMDL for each impaired water quality limited segment (WQLS) on the Section 303(d) List, taking into account seasonal variations and a protective margin of safety (MOS) to account for uncertainty. A TMDL reflects the total pollutant loading of the impairing substance a waterbody can receive and still meet water quality standards.

TMDLs are established to achieve and maintain water quality standards. A water quality standard is the combination of a designated use for a particular body of water and the water quality criteria designed to protect that use. Designated uses include activities such as swimming, drinking water supply, and shellfish propagation and harvest. Water quality criteria consist of narrative statements and numeric values designed to protect the designated uses. Criteria may differ among waters with different designated uses.

The Maryland Department of the Environment (MDE) has identified the Lower Monocacy River in the State of Maryland's 303(d) List as impaired by the following (years listed in parentheses): fecal coliform (2002), nutrients (1996), sediments (1996) and impacts to biological communities (2002, 2004, and 2006). Lake Linganore, an impoundment within the Lower Monocacy River basin, was listed for nutrients and sediments in 1996. The Lower Monocacy River, upstream of US Route-40, and its tributary Israel Creek have been designated as Use IV-P waterbodies (Recreational Trout Waters and Public Water Supply). Downstream of Route US-40, the Lower Monocacy River is designated Use I-P waterbody (Water Contact Recreation, Protection of Aquatic Life and Public Water Supply). Additional tributaries of the Lower Monocacy River--Carroll Creek, Rocky Fountain Run, Little Bennett Creek, Furnace Branch, Ballenger Creek and Bear Branch--are designated as Use III-P waterbodies (Nontidal Cold Water and Public Water Supply). See Code of Maryland Regulations (COMAR) 26.08.02.08P. This document proposes to establish a TMDL for fecal bacteria in the Lower Monocacy River that will allow for attainment of the beneficial use designation of primary contact recreation. The listings for nutrients, sediments, and impacts to biological communities will be addressed separately at a future date. Phosphorus and sediment TMDLs for Lake Linganore were approved by the EPA on March 13, 2003 to address the nutrient and sediment listings. A data solicitation for fecal bacteria was conducted by MDE in 2003, and all readily available data from the past five years were considered.

A separate fecal bacteria TMDL has been developed for the Upper Monocacy River watershed in another document, pending EPA approval. Because the Upper Monocacy flows into the Lower Monocacy, the Upper Monocacy River TMDL is accounted for herein as an upstream load allocation. Appendix E of this report provides further explanation of the upstream loads.

Fecal bacteria are microscopic single-celled organisms (primarily fecal coliform and fecal streptococci) found in the wastes of warm-blooded animals. Their presence in water is used to

assess the sanitary quality of water for body-contact recreation, for consumption of molluscan bivalves (shellfish), and for drinking water. Excessive amounts of fecal bacteria in surface water used for recreation are known to indicate an increased risk of pathogen-induced illness to humans. Infections due to pathogen-contaminated recreation waters include gastrointestinal, respiratory, eye, ear, nose, throat, and skin diseases (US EPA 1986).

In 1986, EPA published "Ambient Water Quality Criteria for Bacteria," in which three indicator organisms were assessed to determine their correlation with swimming-associated illnesses. Fecal coliform, *E. coli* and enterococci were the indicators used in the analysis. Fecal coliform bacteria are a subgroup of total coliform bacteria and *E. coli* bacteria are a subgroup of fecal coliform bacteria. Most *E. coli* are harmless and are found in great quantities in the intestines of people and warm-blooded animals. However, certain pathogenic strains may cause illness. Enterococci are a subgroup of bacteria in the fecal streptococcus group. Fecal coliform, *E. coli* and enterococci can all be classified as fecal bacteria. The results of the EPA study demonstrated that fecal coliform showed less correlation to swimming-associated gastroenteritis than did either *E. coli* or enterococci.

Based on EPA's guidance (US EPA 1986), adopted by Maryland in 2004, the State has revised the bacteria water quality criteria and it is now based on water column limits for either *E. coli* or enterococci. Because multiple monitoring datasets are available within this watershed for various pathogen indicators, the general term fecal bacteria will be used to refer to the impairing substance throughout this document. The TMDL will be based on the pathogen indicator organisms specified in Maryland's current bacteria water quality criteria, either *E. coli* or enterococci. The indicator organism used in the Lower Monocacy River TMDL analysis was *E. coli*.

#### 2.0 SETTING AND WATER QUALITY DESCRIPTION

#### 2.1 General Setting

#### **Location**

The Lower Monocacy River watershed is located in Carroll, Frederick, and Montgomery Counties in Maryland (MD) (Figure 2.1.1). The total drainage area of the Lower Monocacy River is approximately 314.2 square miles (201,104 acres). The city of Frederick, MD and several towns including Walkersville, Woodsboro, and Mount Airy are located in the basin. The Lower Monocacy River flows southward through Frederick, eventually emptying into the Middle Potomac River near the town of Dickerson.

There are several major tributaries comprising the Lower Monocacy River watershed: Israel Creek, Carroll Creek, Linganore Creek, Bush Creek, Bennett Creek, and Ballenger Creek. These branches are free-flowing (non-tidal) streams, and flow directly into the Lower Monocacy River.



Figure 2.1.1: Location Map of the Lower Monocacy River Basin

### Land Use

The 2002 Maryland Department of Planning (MDP) land use/land cover data show that cropland and pastureland account for over 45% of the watershed. The watershed is primarily rural with the exception of Frederick, MD and the smaller communities of Mount Airy, Walkersville, and Woodsboro, which account for the majority of commercial and residential land use.

The land use percentage distribution for the Lower Monocacy River Basin is shown in Table 2.1.1, and spatial distributions for each land use are shown in Figure 2.1.2.

| Land Type   | Acreage | Percentage |  |
|-------------|---------|------------|--|
| Commercial  | 10,534  | 5.2%       |  |
| Crops       | 77,831  | 38.7%      |  |
| Forest      | 59,149  | 29.4%      |  |
| Pasture     | 17,616  | 8.8%       |  |
| Residential | 35,141  | 17.5%      |  |
| Water       | 833     | 0.4%       |  |
| Totals      | 201,104 | 100%       |  |

#### Table 2.1.1: Land Use Percentage Distribution for the Lower Monocacy River Basin



Figure 2.1.2: Land Use of the Lower Monocacy River Watershed

#### **Population**

The total population in the Lower Monocacy River watershed is estimated to be 136,079 people. Figure 2.1.3 illustrates the population density in the watershed. The human population and the number of households were estimated based on a weighted average from the Geographic Information Systems (GIS) 2000 U. S. Census Block and the MDP Land Use 2002 Cover. Since the Lower Monocacy River watershed is a sub-area of the Census Block, percentages of each land use within the watershed were used to extract the areas from the 2000 Census Block. Table 2.1.2 shows the number of dwellings per acre in the Lower Monocacy River watershed. The number of dwellings per acre was derived from information for residential density (low, medium, high) from the MDP land use cover and the Mid-Atlantic Regional Earth Science Applications Center (RESAC) land use cover.

| Land use Code              | Dwelling Per<br>Acres |  |
|----------------------------|-----------------------|--|
| Low Density Residential    | 1                     |  |
| Medium Density Residential | 5                     |  |
| High Density Residential   | 8                     |  |

| Table 2.1.2: | Number | of Dwellings | Per Acre |
|--------------|--------|--------------|----------|
|--------------|--------|--------------|----------|

Based on the number of households from the Total Population from the Census Block and the number of dwellings per acre from the MDP Land Use Cover and RESAC, population per subwatershed was estimated (see Table 2.1.3). Note that the subwatersheds are identified by the MDE monitoring stations located in the mainstem of the river and in the main tributaries. Monitoring stations are listed by flow from upstream to downstream.

| Table 2.1.3: | <b>Total Population</b> | Per Subwatersh | ed in the Lower | <b>Monocacy River</b> | · Watershed |
|--------------|-------------------------|----------------|-----------------|-----------------------|-------------|
|--------------|-------------------------|----------------|-----------------|-----------------------|-------------|

| Station | Dwellings | Population |
|---------|-----------|------------|
| BEN0022 | 7,186     | 12,676     |
| BNG0005 | 9,088     | 17,279     |
| BSC0013 | 5,530     | 8,595      |
| CAR0001 | 15,354    | 38,211     |
| ISR0022 | 3,377     | 6,256      |
| LIN0005 | 12,210    | 18,342     |
| LIN0072 | 8,137     | 11,686     |
| MON0004 | 2,058     | 2,953      |
| MON0155 | 10,521    | 20,083     |
| Total   | 73,461    | 136,079    |



Figure 2.1.3: Population Density in the Lower Monocacy River Basin

### 2.2 Water Quality Characterization

EPA's guidance document, "Ambient Water Quality Criteria for Bacteria" (1986), recommended that states use *E. coli* (for fresh water) or enterococci (for fresh or salt water) as pathogen indicators. Fecal bacteria, *E. coli*, and enterococci were assessed as indicator organisms for predicting human health impacts. A statistical analysis found that the highest correlation to gastrointestinal illness was linked to elevated levels of *E. coli* and enterococci in fresh water (enterococci in salt water).

As per EPA's guidance, Maryland has adopted the new indicator organisms, *E. coli* and enterococci, for the protection of public health in Use I, II, and IV waters. These bacteria listings were originally assessed using fecal coliform bacteria. The analysis was based on a geometric mean of the monitoring data, where the result had to be less than or equal to 200 MPN/100ml. From EPA's analysis (US EPA 1986), this fecal coliform geometric mean target equates to an approximate risk of 8 illnesses per 1,000 swimmers at fresh water beaches and 19 illnesses per 1,000 swimmers at marine beaches (enterococci only), which is consistent with MDE's revised Use I bacteria criteria. Therefore, the original 303(d) List fecal coliform listings can be addressed using the refined bacteria indicator organisms to ensure that risk levels are acceptable.

#### **Bacteria Monitoring**

Table 2.2.1 lists the historical monitoring data for the Lower Monocacy River watershed. MDE conducted monitoring from November 2003 through November 2004. There are nine MDE monitoring stations in the Lower Monocacy River watershed. Two stations located in the Upper Monocacy River basin were included in this analysis in order to develop a TMDL for a portion of land not accounted for in the Upper Monocacy River basin TMDL. This area was included in one of the Lower Monocacy River subwatersheds. In addition to the bacteria monitoring stations, there are two United States Geological Survey (USGS) gauge stations used in deriving the surface flow in the Lower Monocacy River. The locations of these stations are shown in Tables 2.2.2 to 2.2.4 and in Figure 2.2.1. Observations recorded during the period 2003-2004 from the MDE monitoring stations are shown in Appendix A. A table listing the monitoring results from the Lower Monocacy River watershed appears in Appendix A.

Bacteria counts are highly variable and results are presented on a log scale for the seven monitoring stations for data collected for November 2003 through November 2004. Bacteria counts ranged between 10 and 11,200 MPN/100 ml.

| Sponsor                                                              | Location | Date             | Design         | Summary                                       |
|----------------------------------------------------------------------|----------|------------------|----------------|-----------------------------------------------|
| Maryland Department of<br>Natural Resources (DNR)<br>Core Monitoring | MD       | 2/1/95 to 4/1/98 | Fecal Coliform | MON0155: Monocacy<br>River south of Frederick |
| MDE                                                                  | MD       | 11/03 to 10/04   | E. coli        | 9 stations; Enumeration<br>2x per month       |
| MDE                                                                  | MD       | 11/03 to 10/04   | BST (E. coli)  | 9 stations; ARA/BST<br>1x per month           |

 Table 2.2.1: Historical Monitoring Data in the Lower Monocacy River Watershed

# Table 2.2.2: Location of DNR (CORE) Monitoring Station in the Lower Monocacy River Watershed

| Monitoring | Observation     | Total        | LATITUDE        | LONGITUDE       |
|------------|-----------------|--------------|-----------------|-----------------|
| Station    | Period          | Observations | Decimal Degrees | Decimal Degrees |
| MON0155    | 2/1/95 - 4/1/98 | 38           | 39.38788        | -77.38110       |

# Table 2.2.3: Locations of MDE Monitoring Stations in the Lower Monocacy River Watershed

| Monitoring<br>Station | Observation<br>Period | Total<br>Observations | LATITUDE<br>Decimal Degrees | LONGITUDE<br>Decimal Degrees |
|-----------------------|-----------------------|-----------------------|-----------------------------|------------------------------|
| BEN0022               | 2003-2004             | 24                    | 39.294                      | -77.407                      |
| BNG0005               | 2003-2004             | 24                    | 39.365                      | -77.416                      |
| BSC0013               | 2003-2004             | 23                    | 39.360                      | -77.369                      |
| CAR0001               | 2003-2004             | 23                    | 39.427                      | -77.382                      |
| ISR0022               | 2003-2004             | 23                    | 39.467                      | -77.346                      |
| LIN0005               | 2003-2004             | 24                    | 39.410                      | -77.360                      |
| LIN0072               | 2003-2004             | 24                    | 39.427                      | -77.282                      |
| MON0004               | 2003-2004             | 23                    | 39.225                      | -77.450                      |
| MON0155               | 2003-2004             | 24                    | 39.386                      | -77.381                      |
| MON0269               | 2003-2004             | 24                    | 39.480                      | -77.388                      |
| TUS0007               | 2003-2004             | 24                    | 39.458                      | -77.388                      |

| Monitoring<br>Station | Observation<br>Period | Total<br>Observations | LATITUDE<br>Decimal Degrees | LONGITUDE<br>Decimal Degrees |
|-----------------------|-----------------------|-----------------------|-----------------------------|------------------------------|
| 01643000              | 1998-2007             | 6701                  | 39.403                      | -77.366                      |
| 01643500              | 1998-2007             | 6689                  | 39.294                      | -77.407                      |

# Table 2.2.4: Locations of USGS Gauging Stations in the Lower Monocacy River Watershed

FINAL



Figure 2.2.1: Monitoring Stations and Subwatersheds in the Lower Monocacy River Basin

#### 2.3 Water Quality Impairment

#### Designated Uses and Water Quality Standard

The Maryland water quality standards Surface Water Use Designation for the Lower Monocacy River, upstream of US Route-40, and its tributary Israel Creek is Use IV-P (Recreational Trout Waters and Public Water Supply). Downstream of Route US-40, the Lower Monocacy River is designated as Use I-P (Water Contact Recreation, Protection of Aquatic Live and Public Water Supply). Its tributaries Carroll Creek, Rocky Fountain Run, Little Bennett Creek, Furnace Branch, Ballenger Creek, and Bear Branch are designated as Use III-P (Water Contact Recreation, Protection of Aquatic Life, Non-tidal Cold Water and Public Water Supply) (COMAR 26.08.02.08P). The Lower Monocacy River was listed in the State of Maryland's 303(d) List as impaired by fecal bacteria in 2002.

#### Water Quality Criteria

The State water quality standard for bacteria (*E. coli*) used in this study is as follows (COMAR 26.08.02.03-3):

# Table 2.3.1: Bacteria Criteria Values from Table 1 COMAR 26.08.02.03-3 Water Quality Criteria Specific to Designated Uses.

| Indicator  | Steady-state Geometric Mean<br>Indicator Density |  |  |  |
|------------|--------------------------------------------------|--|--|--|
| Freshwater |                                                  |  |  |  |
| E. coli    | 126 MPN/100 ml                                   |  |  |  |

#### Interpretation of Bacteria Data for General Recreational Use

The relevant portion (for freshwater) of the listing methodology pursuant to the 2006 Integrated 303(d) List for all Use Waters - Water Contact Recreation and Protection of Aquatic Life is as follows:

#### **Recreational Waters**

A steady-state geometric mean will be calculated with available data where there are at least five representative sampling events. The data shall be from samples collected during steady-state conditions and during the beach season (Memorial Day through Labor Day) to be representative of the critical condition. If the resulting steady-state geometric mean is greater than 126 *E. coli* MPN/100 ml in freshwater, the waterbody will be listed as impaired. If fewer than five representative sampling events for an area being assessed are available, data from the previous two years will be evaluated in the same way. The single sample maximum criterion applies only

to beaches and is to be used for closure and advisory decisions based on short term exceedances of the geometric mean portion of the standard.

### Water Quality Assessment

Bacteria water quality impairment in the Lower Monocacy River was assessed by comparing both the annual and the seasonal (May  $1^{st}$  –September  $30^{th}$ ) steady-state geometric means of *E. coli* concentrations with the water quality criterion. Graphs illustrating these results can be found in Appendix B.

The steady-state condition is defined as unbiased sampling targeting average flow conditions and/or equally sampling or providing for unbiased sampling of high and low flows. The 1986 EPA criteria document assumed steady-state flow in determining the risk at various bacterial concentrations, and therefore the chosen criterion value also reflects steady-state conditions (EPA 1986). The steady-state geometric mean condition can be estimated either by monitoring design or more practically by statistical analysis as follows:

1. A stratified monitoring design is used where the number of samples collected is proportional to the duration of high flows, mid flows and low flows within the watershed. This sample design allows a geometric mean to be calculated directly from the monitoring data without bias.

2. Routine monitoring typically results in samples from varying hydrologic conditions (i.e., high flows, mid flows and low flows) where the numbers of samples are not proportional to the duration of those conditions. Averaging these results without consideration of the sampling conditions results in a biased estimate of the steady-state geometric mean. The potential bias of the steady-state geometric means can be reduced by weighting the samples results collected during high flow, mid flow and low flow regimes by the proportion of time each flow regime is expected to occur. This ensures that the high flow and low flow conditions are proportionally balanced.

3. If (1) the monitoring design was not stratified based on flow regime or (2) flow information is not available to weight the samples accordingly, then a geometric mean of sequential monitoring data can be used as an estimate of the steady-state geometric mean condition for the specified period.

A routine monitoring design was used to collect bacteria data in the Lower Monocacy River watershed. To estimate the steady-state geometric mean, the monitoring data were first reviewed by plotting the sample results versus their corresponding daily flow duration percentile. Graphs illustrating these results can be found in Appendix B.

To calculate the steady-state geometric mean with routine monitoring data, a conceptual model was developed by dividing the daily flow frequency for the stream segment into strata that are representative of hydrologic conditions. A conceptual continuum of flows is illustrated in Figure 2.3.1.



**Figure 2.3.1:** Conceptual Diagram of Flow Duration Zones

During high flows, a significant portion of the total stream flow is from surface flow contributions. Low flow conditions represent periods with minimal rainfall and surface runoff. There is typically a transitional mid flow period between the high and low flow durations, representative of varying contributions of surface flow inputs that result from differing rainfall volumes and antecedent soil moisture conditions. The division of the entire flow regime into strata enables the estimation of a less biased geometric mean from routine monitoring data that more closely approaches steady state. Based on a flow analysis of several watersheds throughout Maryland, it was determined that flows within the 25<sup>th</sup> to 30<sup>th</sup> daily flow duration percentiles were representative of average daily flows. It is assumed for this analysis that flows higher than the 25<sup>th</sup> percentile flow represent high flows, and flows lower than the 25<sup>th</sup> percentile represent mid/low flows. A detailed method of how the flow strata were defined is presented in Appendix B.

Factors for estimating a steady-state geometric mean are based on the frequency of each flow stratum. The weighting factor accounts for the proportion of time that each flow stratum represents. The weighting factors for an average hydrological year used in the Lower Monocacy River TMDL analysis are presented in Table 2.3.2.

| Flow Duration Zone | <b>Duration Interval</b> | Weighting Factor |
|--------------------|--------------------------|------------------|
| High Flows         | 0-25%                    | 0.25             |
| Mid/Low Flows      | 25-100%                  | 0.75             |

 Table 2.3.2: Weighting Factors for Average Hydrology Year Used for Estimation of Geometric Means in the Lower Monocacy River Watershed

Bacteria enumeration results for samples within a specified stratum will receive their corresponding weighting factor. The steady-state geometric mean is calculated as follows:

$$M = \sum_{i=1}^{2} M_i * W_i \tag{1}$$

where

$$M_{i} = \frac{\sum_{j=1}^{n_{i}} \log_{10}(C_{i,j})}{n_{i}}$$
(2)

$$\begin{split} M &= \log \text{ weighted mean} \\ M_i &= \log \text{ mean concentration for stratum i} \\ W_i &= \text{Proportion of stratum i} \\ C_{i,j} &= \text{Concentration for sample j in stratum i} \\ n_i &= \text{number of samples in stratum} \end{split}$$

Finally, the steady-state geometric mean concentration is estimated using the following equation:

$$C_{gm} = 10^M \tag{3}$$

C<sub>gm</sub> = Steady-state geometric mean concentration

Tables 2.3.3 and 2.3.4 present the maximum and minimum concentrations and the geometric means by stratum, and the overall steady-state geometric mean for the Lower Monocacy River subwatersheds for the annual and the seasonal (May 1<sup>st</sup> –September 30<sup>th</sup>) periods. Monitoring stations are listed by flow from upstream to downstream. For the seasonal period, only one sample in each subwatershed fell in the high flow category; therefore, a geometric mean by flow stratum could not be calculated due to an insufficient number of samples. In the seasonal analysis, only the overall geometric mean was applied.

| Station        | Flow<br>Stratum | #<br>Samples | <i>E. coli</i><br>Minimum<br>(MPN/100ml) | <i>E. coli</i><br>Maximum<br>(MPN/100ml) | Annual Steady State<br>Geometric Mean<br>(MPN/100ml) | Annual Overall<br>Geometric Mean<br>(MPN/100ml) |
|----------------|-----------------|--------------|------------------------------------------|------------------------------------------|------------------------------------------------------|-------------------------------------------------|
| DENIQO22       | High            | 12           | 20                                       | 1,400                                    | 206                                                  | 163                                             |
| DEINUU22       | Low             | 12           | 10                                       | 700                                      | 150                                                  |                                                 |
| PNC 0005       | High            | 9            | 50                                       | 1,190                                    | 265                                                  | 243                                             |
| DINGUUUS       | Low             | 15           | 50                                       | 1,240                                    | 237                                                  |                                                 |
| <b>DSC0013</b> | High            | 8            | 50                                       | 2,140                                    | 640                                                  | 310                                             |
| BSC0015        | Low             | 15           | 40                                       | 930                                      | 244                                                  |                                                 |
| C A D0001      | High            | 9            | 350                                      | 1,720                                    | 738                                                  | 918                                             |
| CARUUUI        | Low             | 14           | 74                                       | 5,170                                    | 986                                                  |                                                 |
| ISDAAD         | High            | 9            | 130                                      | 2,280                                    | 445                                                  | 959                                             |
| 15K0022        | Low             | 14           | 20                                       | 11,200                                   | 1,238                                                |                                                 |
| 1 110005       | High            | 9            | 10                                       | 5,170                                    | 189                                                  | 118                                             |
| LINUUUS        | Low             | 15           | 10                                       | 840                                      | 101                                                  |                                                 |
| 1 110072       | High            | 9            | 190                                      | 3,260                                    | 846                                                  | 644                                             |
| LINUU/2        | Low             | 15           | 60                                       | 2,040                                    | 587                                                  |                                                 |
| MONDODA        | High            | 8            | 30                                       | 1,580                                    | 319                                                  | 143                                             |
|                | Low             | 15           | 10                                       | 880                                      | 110                                                  |                                                 |
| MONDISS        | High            | 9            | 30                                       | 1,380                                    | 378                                                  | 184                                             |
|                | Low             | 15           | 10                                       | 830                                      | 144                                                  |                                                 |

 Table 2.3.3: Lower Monocacy River Annual Steady-State Geometric Means by Stratum per Subwatersheds

| Station | #<br>Samples | <i>E. coli</i><br>Minimum<br>(MPN/100ml) | <i>E. coli</i><br>Maximum<br>(MPN/100ml) | Seasonal Overall<br>Geometric Mean<br>(MPN/100ml) |  |
|---------|--------------|------------------------------------------|------------------------------------------|---------------------------------------------------|--|
| BEN0022 | 10           | 100                                      | 1,400                                    | 249                                               |  |
| BNG0005 | 10           | 190                                      | 1,240                                    | 435                                               |  |
| BSC0013 | 10           | 230                                      | 1,070                                    | 434                                               |  |
| CAR0001 | 9            | 74                                       | 5,170                                    | 1,142                                             |  |
| ISR0022 | 10           | 276                                      | 11,200                                   | 3,067                                             |  |
| LIN0005 | 10           | 30                                       | 670                                      | 126                                               |  |
| LIN0072 | 10           | 148                                      | 2,490                                    | 1,102                                             |  |
| MON0004 | 10           | 30                                       | 1,580                                    | 223                                               |  |
| MON0155 | 10           | 120                                      | 1,020                                    | 294                                               |  |

#### Table 2.3.4: Lower Monocacy River Seasonal (May 1<sup>st</sup>-September 30<sup>th</sup>) Period Steady-State Geometric Means by Stratum per Subwatersheds

#### 2.4 Source Assessment

#### **Nonpoint Source Assessment**

Nonpoint sources of fecal bacteria do not have one discharge point but occur over the entire length of a stream or waterbody. During rain events, surface runoff transports water and fecal bacteria over the land surface and discharges to the stream system. This transport is dictated by rainfall, soil type, land use, and topography of the watershed. Many types of nonpoint sources introduce fecal bacteria to the land surface, including the manure spreading process, direct deposition from livestock during the grazing season, and excretions from pets and wildlife. The deposition of non-human fecal bacteria directly to the stream occurs when livestock or wildlife have direct access to the waterbody. Nonpoint source contributions from human activities generally arise from failing septic systems and their associated drain fields or leaking infrastructure (i.e., sewer systems). The Lower Monocacy River watershed is covered by three National Pollutant Discharge Elimination System (NPDES) Municipal Separate Storm Sewer System (MS4) individual permits, which are technically point sources subject to waste load allocation (WLA<sub>LM</sub>); therefore, nonpoint source contributions from domestic animal and human *Lower Monocacy River TMDL Fecal Bacteria Document version: September 27, 2009* 

sources will be categorized as point sources and assigned to the Stormwater  $WLA_{LM}$ . The presence of agricultural land use is significant in the watershed, and sources associated with it (i.e., livestock) contribute to the load allocation ( $LA_{LM}$ ) in this analysis. Wildlife contributions will be distributed between WLAs and LAs due to the presence of wildlife in both developed and undeveloped areas of the watershed.

#### Sewer Systems

The Lower Monocacy River watershed is serviced by both sewer systems and septic systems. Sewer systems are present in the city of Frederick and several towns including Mount Airy, Woodsboro, and Walkersville. Wastewater collected by these systems is treated at several Wastewater Treatment Plants (WWTPs) throughout the watershed. A list of these facilities is found in Table 2.4.2.

#### Septic Systems

On-site disposal (septic) systems are located throughout the Lower Monocacy River watershed. Table 2.4.1 presents the total households and the number of septic systems per subwatershed. Figure 2.4.1 depicts the areas that are serviced by sewers and septic systems.

| Subwatershed<br>Station | Septics Systems (units) | Households per<br>Subwatershed |
|-------------------------|-------------------------|--------------------------------|
| BEN0022                 | 4,064                   | 7,186                          |
| BNG0005                 | 2,582                   | 9,088                          |
| BSC0013                 | 2,992                   | 5,530                          |
| CAR0001                 | 1,199                   | 15,354                         |
| ISR0022                 | 1,379                   | 3,377                          |
| LIN0005                 | 4,256                   | 12,210                         |
| LIN0072                 | 3,329                   | 8,137                          |
| MON0004                 | 1,117                   | 2,058                          |
| MON0155                 | 1,423                   | 10,521                         |
| Total                   | 23,764                  | 83,982                         |

# Table 2.4.1: Septic Systems and Households Per Subwatershed in the Lower Monocacy River Watershed



Figure 2.4.1: Sanitary Sewer Service Areas and Septics in the Lower Monocacy River Watershed

#### Point Source Assessment

There are two broad types of National Pollutant Discharge Elimination System (NPDES) permits considered in this analysis: individual and general. Both types of permits include industrial and municipal categories. Individual permits can include industrial and municipal WWTPs and Phase I municipal separate storm sewer systems (MS4s). MDE general permits have been established for surface water discharges that include: Phase II and other MS4 permits, surface coal mines, mineral mines, quarries, borrow pits, ready-mix concrete, asphalt plants, seafood processors, hydrostatic testing of tanks and pipelines, marinas, concentrated animal feeding operations, and stormwater associated with industrial activities.

#### NPDES Regulated Stormwater

Bacteria sources associated with MS4s and other NPDES regulated stormwater entities are considered point sources. Stormwater runoff is an important source of water pollution, including bacterial pollution. A MS4 is a conveyance or system of conveyances (roads with drainage systems, municipal streets, catch basins, curbs, gutters, ditches, man-made channels, storm drains) designed or used for collecting or conveying stormwater and delivering it to a waterbody. MS4 programs are designed to reduce the amount of pollution that enters a waterbody from storm sewer systems to the maximum extent practicable.

The Lower Monocacy River watershed is located in Carroll, Frederick, and Montgomery Counties, which are all individual Phase I National Pollutant Discharge Elimination System (NPDES) MS4 permit jurisdictions. Stormwater in the watershed is conveyed through storm sewers covered by NPDES MS4 permits. Bacteria loads associated with these MS4s are therefore included in the Stormwater WLA<sub>LM</sub> of this TMDL, which also encompasses any other NPDES regulated Phase I and Phase II stormwater entities in the watershed, including State and federal permittees.

#### Sanitary Sewer Overflows

Sanitary Sewer Overflows (SSOs) occur when the capacity of a separate sanitary sewer is exceeded. There are several factors that may contribute to SSOs from a sewerage system, including pipe capacity, operations and maintenance effectiveness, sewer design, age of system, pipe materials, geology and building codes. SSOs are prohibited by the facilities' permits, and must be reported to MDE's Water Management Administration in accordance with COMAR 26.08.10 to be addressed under the State's enforcement program.

There were a total of 15 SSOs reported to MDE between September 2003 and November 2004 in the Lower Monocacy River watershed. Approximately 424,415 gallons of SSOs were discharged through various waterways (surface water, groundwater, sanitary sewers, etc.) in the Frederick and Montgomery County portion of the watershed. No SSOs were reported in the Carroll County portion of the watershed. Figure 2.4.2 depicts the locations where SSOs occurred in the watershed between September 2003 and November 2004.



Figure 2.4.2: Sanitary Sewer Overflows Areas in the Lower Monocacy River Watershed

#### Municipal and Industrial Wastewater Treatment Plants (WWTPs)

Wastewater treatment plants are designed to treat wastewater before it can be discharged to a stream or river. The goals of wastewater treatment are to protect the public health, protect aquatic life, and to prevent harmful substances from entering the environment.

Based on MDE's point source permitting information, there are 17 NPDES permitted point source facilities with permits regulating the discharge of fecal bacteria directly into the Lower Monocacy River watershed (Table 2.4.2 and Figure 2.4.3). Table 2.4.2 lists all active facilities. The McKinney WWTP is currently under construction and is located adjacent to the Ballenger Creek WWTP. The effluent from the McKinney WWTP will be combined with the Ballenger Creek WWTP and discharged through the existing Ballenger Creek outfall.

| Facility                                     | Map<br>ID | NPDES<br>Permit | Subwatershed | Average<br>Annual<br>Flow*<br>(MGD) | Fecal Coliform<br>Average Annual<br>Concentrations*<br>(MPN/100ml) | Fecal<br>Coliform<br>Load Per<br>Day<br>(Billion<br>MPN/day) |
|----------------------------------------------|-----------|-----------------|--------------|-------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------|
| Reichs Ford Sanitary<br>Landfill             | ps-1      | MD0061093       | MON0004      | 0.075                               | 32                                                                 | 0.094                                                        |
| Woodsboro WWTP                               | ps-2      | MD0058661       | ISR0022      | 0.084                               | 21                                                                 | 0.105                                                        |
| Kemptown School<br>WWTP                      | ps-3      | MD0056481       | BEN0022      | 0.002                               | 34                                                                 | 0.002                                                        |
| Monrovia WWTP                                | ps-4      | MD0059609       | BSC0013      | 0.082                               | 32                                                                 | 0.103                                                        |
| New Life Foursquare<br>Church/School<br>WWTP | ps-5      | MD0057100       | BNG0005      | 0.002                               | 21                                                                 | 0.003                                                        |
| Concord Trailer Park<br>WWTP                 | ps-6      | MD0023060       | BNG0005      | 0.008                               | 2                                                                  | 0.010                                                        |
| Libertytown WWTP                             | ps-7      | MD0060577       | LIN0072      | 0.039                               | 27                                                                 | 0.048                                                        |
| Hyattstown WWTP                              | ps-8      | MD0067768       | BEN0022      | 0.004                               | 13                                                                 | 0.005                                                        |
| New Market WWTP                              | ps-9      | MD0020729       | BSC0013      | 0.075                               | 35                                                                 | 0.094                                                        |
| Cracked Claw<br>WWTP                         | ps-10     | MD0024244       | BSC0013      | 0.012                               | 13                                                                 | 0.015                                                        |
| Mill Bottom WWTP                             | ps-11     | MD0065439       | BSC0013      | 0.062                               | 25                                                                 | 0.078                                                        |
| Springview Mobile<br>Home WWTP               | ps-12     | MD0022870       | BNG0005      | 0.007                               | 2                                                                  | 0.008                                                        |
| Pleasant Branch<br>WWTP                      | ps-13     | MD0065269       | BEN0022      | 0.044                               | 22.421                                                             | 0.055                                                        |
| Dan-Dee Motel and<br>Country Inn WWTP        | ps-14     | MD0023710       | CAR0001      | 0.001                               | 3.400                                                              | 0.001                                                        |
| Frederick City<br>WWTP                       | ps-15     | MD0021610       | MON0155      | 7.176                               | 7.532                                                              | 8.964                                                        |
| Fort Detrick WWTP                            | ps-16     | MD0020877       | MON0155      | 0.685                               | 2.000                                                              | 0.855                                                        |
| Ballenger Creek<br>WWTP                      | ps-17     | MD0021822       | MON0004      | 4.751                               | 21.769                                                             | 5.935                                                        |
| Future McKinney<br>Creek WWTP                |           | -               | MON0004      | -                                   | -                                                                  | -                                                            |

### Table 2.4.2: NPDES Permit Holders with Permits Regulating Fecal Bacteria Discharge in the Lower Monocacy River Watershed

\*Values in bold are maximum concentration or flow



Figure 2.4.3: Permitted Point Sources Discharging Fecal Bacteria in the Lower Monocacy River Watershed
#### **Bacteria Source Tracking**

Bacteria source tracking (BST) was used to identify the relative contributions from various sources of bacteria to in-stream water samples. BST monitoring was conducted at nine stations throughout the Lower Monocacy River watershed, where 12 samples (one per month) were collected for a one-year duration. Sources are defined as domestic (pets and human associated animals), human (human waste), livestock (agricultural animals), and wildlife (mammals and waterfowl). To identify sources, samples are collected within the watershed from known fecal sources, and the patterns of antibiotic resistance of these known sources are compared to isolates of unknown bacteria from ambient water samples. Details of the BST methodology and data can be found in Appendix C.

An accurate representation of the expected average source at each station is estimated by using a stratified weighted mean of the identified sample results. The weighting factors are based on the  $log_{10}$  of the bacteria concentration and the percent of time that represents the high stream flow or low stream flow (See Appendix B). The procedure for calculating the stratified weighted mean of the sources per monitoring station is as follows:

- 1. Calculate the percentage of isolates per source per each sample date (S).
- 2. Calculate the weighted percentage (MS) of each source per flow strata (high/low). The weighting is based on the log<sub>10</sub> bacteria concentration for the water sample.
- 3. The final weighted mean source percentage, for each source category, is based on the proportion of time in each flow duration zone (i.e., high flow=0.3, low flow=0.7).

(4)

The weighted mean for each source category is calculated using the following equations:

$$MS_k = \sum_{i=1}^2 MS_{i,k} * W_i$$

where

$$MS_{i,k} = \frac{\sum_{j=1}^{n_i} \log_{10}(C_{i,j}) * S_{i,j,k}}{\sum_{j=1}^{n_i} \log_{10}(C_{i,j})}$$
(5)

where

 $MS_{i,k}$  = Weighted mean proportion of isolates for source k in stratum i  $MS_k$  = weighted mean proportion of isolates of source k  $W_i$ = Proportion covered by stratum i i = stratum j = sample k = Source category (1 = human, 2 = domestic, 3 = livestock, 4 = wildlife, 5 = unknown)  $C_{i,j}$  = Concentration for sample j in stratum i  $S_{i,j,k}$  = Proportion of isolates for sample j, of source k in stratum i  $n_i$  = number of samples in stratum I

The complete distributions of the annual and seasonal periods source loads are listed in Tables 2.4.3 and 2.4.4. Details of the BST data and tables with the BST analysis results can be found in Appendix C. For the seasonal period, only one sample in each subwatershed fell in the high flow category; therefore, a distribution by flow stratum was not calculated due to an insufficient number of samples. In the seasonal analysis, a distribution of all samples was calculated and applied.

| Station        | Flow Stratum | %<br>domestic<br>animals | %<br>human | %<br>livestock | %<br>wildlife | %<br>unknown |
|----------------|--------------|--------------------------|------------|----------------|---------------|--------------|
|                | High         | 17.1                     | 18.9       | 21.6           | 26.0          | 16.4         |
| <b>BEN0022</b> | Low          | 17.6                     | 15.9       | 22.7           | 17.5          | 26.3         |
|                | Weighted     | 17.5                     | 16.7       | 22.4           | 19.6          | 23.8         |
|                | High         | 22.0                     | 13.9       | 24.8           | 23.4          | 16.0         |
| BNG0005        | Low          | 34.3                     | 8.6        | 27.8           | 11.4          | 17.9         |
|                | Weighted     | 31.2                     | 9.9        | 27.1           | 14.4          | 17.4         |
|                | High         | 17.0                     | 13.6       | 21.5           | 20.6          | 27.3         |
| BSC0013        | Low          | 23.3                     | 29.6       | 21.4           | 9.8           | 16.0         |
|                | Weighted     | 21.7                     | 25.6       | 21.4           | 12.5          | 18.8         |
|                | High         | 30.5                     | 23.6       | 19.2           | 15.2          | 11.6         |
| CAR0001        | Low          | 19.5                     | 12.7       | 32.0           | 15.0          | 20.7         |
|                | Weighted     | 22.3                     | 15.4       | 28.8           | 15.1          | 18.4         |
|                | High         | 36.2                     | 18.3       | 21.8           | 12.4          | 11.2         |
| ISR0022        | Low          | 25.6                     | 8.8        | 30.5           | 18.2          | 17.0         |
|                | Weighted     | 28.3                     | 11.1       | 28.3           | 16.7          | 15.5         |
|                | High         | 25.7                     | 29.9       | 22.4           | 7.3           | 14.7         |
| LIN0005        | Low          | 24.9                     | 5.7        | 27.4           | 19.7          | 22.3         |
|                | Weighted     | 25.1                     | 11.8       | 26.1           | 16.6          | 20.4         |
|                | High         | 34.7                     | 22.9       | 11.9           | 14.0          | 16.6         |
| LIN0072        | Low          | 12.8                     | 7.7        | 30.1           | 21.5          | 27.9         |
|                | Weighted     | 18.2                     | 11.5       | 25.6           | 19.6          | 25.1         |
|                | High         | 23.4                     | 21.9       | 22.0           | 18.4          | 14.3         |
| <b>MON0004</b> | Low          | 16.2                     | 15.1       | 28.8           | 14.1          | 25.8         |
|                | Weighted     | 18.0                     | 16.8       | 27.1           | 15.1          | 23.0         |
|                | High         | 24.0                     | 22.3       | 23.6           | 16.2          | 13.9         |
| MON0155        | Low          | 14.0                     | 8.1        | 29.9           | 23.9          | 24.1         |
|                | Weighted     | 16.5                     | 11.7       | 28.3           | 22.0          | 21.5         |

| Table 2.4.3: | Distribution of Fecal Bacteria Source Loads in the Lower Monocacy River |
|--------------|-------------------------------------------------------------------------|
|              | Basin for the Annual Period                                             |

Lower Monocacy River TMDL Fecal Bacteria Document version: September 27, 2009

| Station        | %<br>domestic<br>animals | %<br>human | %<br>livestock | %<br>wildlife | %<br>unknown |
|----------------|--------------------------|------------|----------------|---------------|--------------|
| <b>BEN0022</b> | 7.7                      | 20.6       | 23.5           | 20.0          | 28.2         |
| BNG0005        | 14.9                     | 15.4       | 39.8           | 11.8          | 18.0         |
| BSC0013        | 9.6                      | 26.0       | 25.1           | 18.8          | 20.4         |
| CAR0001        | 16.6                     | 11.6       | 36.3           | 20.4          | 15.1         |
| ISR0022        | 20.2                     | 11.5       | 36.1           | 13.9          | 18.3         |
| LIN0005        | 7.6                      | 10.8       | 25.8           | 21.9          | 33.9         |
| LIN0072        | 8.2                      | 14.3       | 31.0           | 18.9          | 27.5         |
| MON0004        | 11.6                     | 15.9       | 23.7           | 20.6          | 28.2         |
| MON0155        | 14.4                     | 2.4        | 28.9           | 22.2          | 32.1         |

 Table 2.4.4: Distribution of Fecal Bacteria Source Loads in the Lower Monocacy River

 Basin for the Seasonal Period (May 1<sup>st</sup> – September 30<sup>th</sup>)

#### 3.0 TARGETED WATER QUALITY GOAL

The overall objective of the fecal bacteria TMDL set forth in this document is to establish the loading caps needed to assure attainment of water quality standards in the Lower Monocacy River watershed area. These standards are described fully in Section 2.3, "Water Quality Impairment."

#### 4.0 TOTAL MAXIMUM DAILY LOADS AND SOURCE ALLOCATION

#### 4.1 Overview

This section provides an overview of the non-tidal fecal bacteria TMDL development, with a discussion of the many complexities involved in estimating bacteria concentrations, loads and sources. The second section presents the analysis for estimating a representative geometric mean fecal bacteria concentration and baseline loads. The third section describes the analysis framework and how the hydrological, water quality and BST data are linked together in the TMDL process. This analysis methodology is based on available monitoring data and is specific to a free-flowing stream system. The fourth section addresses the critical condition and seasonality. The fifth section presents the margin of safety. The sixth section discusses annual average TMDL loading caps and how maximum daily loads are estimated. The seventh section presents TMDL scenario descriptions. The eighth section presents the load allocations. Finally, in Section 4.9, the TMDL equation is summarized.

To be most effective, the TMDL provides a basis for allocating loads among the known pollutant sources in the watershed so that appropriate control measures can be implemented and water quality standards achieved. By definition, the TMDL is the sum of the individual waste load allocations (WLAs) for point sources, load allocations (LAs) for non point sources and natural background sources. A margin of safety (MOS) is also included and accounts for the uncertainty in the analytical procedures used for water quality modeling, and the limits in scientific and technical understanding of water quality in natural systems. Although this formulation suggests that the TMDL be expressed as a load, the Code of Federal Regulations (40 CFR 130.2(i)) states that the TMDL can be expressed in terms of "mass per time, toxicity or other appropriate measure."

For many reasons, bacteria are difficult to simulate in water quality models. They reproduce and die off in a non-linear fashion as a function of many environmental factors, including temperature, pH, turbidity (UV light penetration) and settling. They occur in concentrations that vary widely (i.e., over orders of magnitude) and an accurate estimation of source inputs is difficult to develop. Finally, limited data are available to characterize the effectiveness of any program or practice at reducing bacteria loads (Schueler 1999).

Bacteria concentrations, determined through laboratory analysis of in-stream water samples for bacteria indicators (e.g., enterococci), are expressed in either colony forming units (CFU) or most probable number (MPN) of colonies. The first method (US EPA 1985) is a direct estimate

of the bacteria colonies (Method 1600), and the second is a statistical estimate of the number of colonies (ONPG MUG Standard Method 9223B, AOAC 991.15). Sample results indicate the extreme variability in the total bacteria counts (see Appendix A). The distribution of the sample results tends to be lognormal, with a strong positive skew of the data. Estimating loads of constituents that vary by orders of magnitude can introduce much uncertainty and result in large confidence intervals around the final results.

Estimating bacteria sources can also be problematic, due to the many assumptions required and to limited available data. Lack of specific numeric and spatial location data for several source categories, from failing septic systems to domestic animals, livestock, and wildlife populations, can create many potential uncertainties in traditional water quality modeling. For this reason, MDE applies an analytical method combined with the bacteria source tracking described above for the calculation of this TMDL.

#### 4.2 Analysis Framework

This TMDL analysis uses flow duration curves to identify flow intervals that are used as indicators of hydrological conditions (i.e., annual average and critical conditions). This analytical method, combined with water quality monitoring data and BST, provides reasonable results (Cleland 2003), a better description of water quality than traditional water quality modeling, and also meets TMDL requirements.

In brief, baseline loads are estimated first for each subwatershed by using bacteria monitoring data and long-term flow data. These baseline loads are divided into four bacteria source categories using the results of BST analysis. Next, the percent reduction required to meet the water quality criterion is estimated from the observed bacteria concentrations after determining the critical condition and accounting for seasonality. Critical condition and seasonality are determined by assessing annual and seasonal hydrological conditions for high flow and low flow periods. Finally, TMDLs for each subwatershed are estimated by applying these percent reductions.

Figure 4.2.1 illustrates how the hydrological (flow duration curve), water quality and BST data are linked together for the TMDL development.



Figure 4.2.1: Diagram of Non-tidal Bacteria TMDL Analysis Framework

#### 4.3 Estimating Baseline Loads

Baseline loads estimated in this TMDL analysis are reported in long-term average loads, using bacteria monitoring data and long-term flow data.

The geometric mean concentration is calculated from the log transformation of the raw data. Statistical theory tells us that when back-transformed values are used to calculate average daily loads or total annual loads, the loads will be biased low (Richards 1998). To avoid this bias, a factor should be added to the log-concentration before it is back-transformed. There are several methods of determining this bias correction factor, ranging from parametric estimates resulting from the theory of the log-normal distribution to non-parametric estimates using a bias correction factor. [Ferguson 1986; Cohn et al. 1989; Duan 1983]. There is much literature on the applicability and results from these various methods with a summary provided in Richards

(1998). Each has advantages and conditions of applicability. A non-parametric estimate of the bias correction factor (Duan 1983) was used in this TMDL analysis.

To estimate baseline loads for each subwatershed of the Lower Monocacy River, bias correction factors, daily average flows and geometric mean concentrations for each stratum are first estimated.

The bias correction factor for each stratum is estimated as follows:

$$F1_i = A_i/C_i \tag{6}$$

where

 $F1_i$  = Bias correction factor for stratum *i*  $A_i$  = Long term annual arithmetic mean for stratum *i*  $C_i$  = Long term annual geometric mean for stratum *i* 

Daily average flows are estimated for each flow stratum using the watershed area ratio approach, since nearby long-term monitoring data are available.

The loads for each stratum are estimated as follows:

$$L_i = Q_i * C_i * F_1 * F_2 \tag{7}$$

where

 $L_i$  = Daily average load (Billion MPN/day) at monitoring station for stratum i  $Q_i$  = Daily average flow (cfs) for stratum i  $C_i$  = Geometric mean for stratum i  $F_1$  = Bias correction factor  $F_2$  = Unit conversion factor (0.0245)

Finally, for each subwatershed, the baseline load is estimated as follows:

$$L = \sum_{i=1}^{2} L_i * W_i$$
 (8)

L = Daily average load at station (MPN/day) $W_i = Proportion of stratum i$ 

In the Lower Monocacy River watershed, a weighting factor of 0.25 for high flow and 0.75 for low/mid flows were used to estimate the annual baseline load expressed as Billion MPN *E. coli*/day.

#### Estimating Subwatersheds Loads

Subwatersheds with more than one monitoring station were subdivided into unique watershed segments, thus allowing individual load and reduction targets to be determined for each. In the Lower Monocacy River watershed, three subwatersheds have both upstream and downstream monitoring stations. The downstream segments of each are monitored at stations LIN0005, MON0004, and MON0155, respectively (see Figure 2.2.1), and identified as subwatersheds by adding the extension "sub" to their station names (LIN0005sub, MON0004sub, and MON0155sub). Thus, there are a total of nine subwatersheds defined in this analysis. The upstream stations for subwatershed MON0004sub, TUS0007 and MON0269, are located in the Upper Monocacy River basin. A portion of the Upper Monocacy River basin was not accounted for in the Upper Monocacy River TMDL and therefore was included as a part of this subwatershed. The baseline loads for these stations were required to calculate the subwatershed load for MON004sub.

The total baseline loads from the upstream watersheds, estimated from the monitoring data, were multiplied by a transport factor derived from first order decay. The decay factor for *E. coli* used in the analysis was obtained from the study "Pathogen Decay in Urban Waters" by Easton et al. (2001), and was estimated by linear regression of counts of microorganisms versus time (die-off plots). The estimated transported loads were then subtracted from the downstream cumulative load to estimate the adjacent subwatershed load. The general equation for the flow mass balance is:

(9)

$$\sum Q_{us} + Q_{sub} = Q_{ds}$$

where

 $Q_{us} = Upstream flow (cfs)$  $Q_{sub} = Subwatershed flow (cfs)$  $Q_{ds} = Downstream flow (cfs)$ 

and the general equations for bacteria loading mass balance:

$$\sum \left( e^{-kt} Q_{us} C_{us} \right) + Q_{sub} C_{sub} = Q_{ds} C_{ds} \tag{10}$$

where

 $C_{us}$  = Upstream bacteria concentration (MPN/100ml) k = Bacteria (*E. coli*) decay coefficient (1/day) = 0.762 day<sup>-1</sup> t = travel time from upstream watershed to outlet (days)  $C_{sub}$  = Subwatershed bacteria concentration (MPN/100ml)  $C_{ds}$  = Downstream bacteria concentration (MPN/100ml)

The concentrations in the subwatersheds were estimated by considering the ratio of high flow concentration to low flow concentrations in the upstream watersheds. If the total load and *Lower Monocacy River TMDL Fecal Bacteria Document version: September 27, 2009* 

average flow were used to estimate the geometric mean concentration, this estimated concentration would be biased if there was a correlation with flow and concentration. For example, in two strata, the steady-state geometric mean is estimated as follows:

$$L = Q_{high}W_{high}C_{high} + Q_{low}W_{low}C_{low}$$
(11)

where

L = Average Load (MPN/day)  $Q_i$  = Average flow for stratum i  $W_i$ = Proportion of stratum i  $C_i$  = Concentration for stratum i  $n_i$  = number of samples in stratum I

Notice that the load in equation (10) is based on two concentrations and therefore, when using the mass balance approach and the total load, this results in two unknowns,  $C_{high}$  and  $C_{low}$ , with one equation. Thus a relationship between  $C_{high}$  and  $C_{low}$ , must be estimated to solve for the concentration in both strata. This relationship is estimated using the average of the ratios estimated from the monitoring data in the upstream watersheds. Using this relationship, the following two equations result:

$$C_{low} = \frac{L}{Q_{high}R * W_{high} + Q_{low}W_{low}}$$
(12)

where

$$R = \frac{C_{high}}{C_{low}} \tag{13}$$

and the final geometric mean concentration is estimated as follows:

$$GM = 10^{W_{high} \log_{10}(C_{high}) + W_{low} \log_{10}(C_{low})}$$
(14)

To estimate the load from subwatershed MON0155sub, the transported load from stations TUS0007, MON0269, LIN0005sub, ISR0022, and CAR0001, estimated as explained above, is subtracted from the load measured at station MON0155. The difference is assigned to subwatershed MON0155sub. To estimate the load from subwatershed MON0004sub, the transported load from stations MON0155, BNG0005, BSC0013, and BEN0022 is subtracted from the load measured at station MON004. The difference is assigned to subwatershed MON0004sub. To estimate the load from subwatershed LIN0005sub, the transported load from station LIN0072LL, determined from the lake discharge equation explained below, is subtracted from the load measured at station LIN0005. The difference is assigned to subwatershed LIN0005sub.

Source estimates from the BST analysis are completed for each station and are based on the contribution from the upstream watershed. Given the uncertainty of in-stream bacteria processes and the complexity involved in back-calculating an accurate source transport factor, the sources for MON0155sub, MON0004sub, and LIN0005sub were assigned from the analysis for MON0155, MON0004, and LIN0005, respectively.

Station LIN0072 is located directly above an impoundment, Linganore Lake. Ponds and lakes are excellent sinks for bacteria because they are fairly enclosed systems. Compared to streams, water entering a pond has a longer residence time before leaving the system. Because of this, bacteria loads entering a lake can be significantly reduced by natural decay, loss due to solar radiation and settling. In order to estimate the correct subwatershed load for the downstream station LIN0005, the flow and concentration downstream of Lake Linganore must be determined and substituted for the flow and concentration at station LIN0072 in the calculation. The location of the outlet from the Lake will be defined as LIN0072LL. The load from subwatershed LIN0007LL represents the load exiting the lake.

A steady-state mass balance equation with first order decay was used to estimate the bacterial loading from the watershed exiting the lake. A median decay rate of 0.1/day from different literature values (Easton et al. 2001 and 1999) and estimates based on *in situ* measurements of *E. coli*, was selected based on the pond's average retention time (Maryland Water Resources Administration, 1985). The average retention time used for Linganore Lake was 16.2 days (1,400,000 seconds). The average discharge from the lake of 83.8 cfs was assigned as the outlet flow for low and high flow conditions. Data was not available for the high and low flow strata. These loadings were calculated for the high flow and the low flow stratums. The following equation was used for calculating the bacteria loadings discharge from the lake:

$$Q_{out}C_{out} = Q_{in}C_{in}e^{-kt}$$
(10)

$$C_{out} = \frac{Q_{in}C_{in}e^{-kt}}{Q_{out}}$$
(11)

Where:

Ci, in = E.coli concentrations inflow to lake in stratum i Ci, out = E.coli concentrations outflow from lake in stratum i Qi, in = Inflow to lake in stratum i Qi, out = outflow from lake in stratum i k = Bacteria decay coefficient (1/day)t = average travel time from upstream watershed to outlet

Results of the baseline load calculations are presented in Table 4.3.1.

|                                 |                            | High Flow  |                                                |                    | Low Flow   | Desslars I as J                                |                    |                                       |
|---------------------------------|----------------------------|------------|------------------------------------------------|--------------------|------------|------------------------------------------------|--------------------|---------------------------------------|
| Station                         | Area<br>(mi <sup>2</sup> ) | Q<br>(cfs) | <i>E. coli</i><br>Concentration<br>(MPN/100ml) | Smearing<br>Factor | Q<br>(cfs) | <i>E. coli</i><br>Concentration<br>(MPN/100ml) | Smearing<br>Factor | (Billion MPN<br><i>E. coli</i> /year) |
| TUS0007<br>Upper Monocacy River | 18.2                       | 59.7       | 126.5                                          | 1.4                | 11.0       | 368.4                                          | 1.4                | 62,687                                |
| MON0269<br>Upper Monocacy River | 647.7                      | 2639.7     | 298.5                                          | 2.0                | 281.7      | 139.0                                          | 2.1                | 4,081,709                             |
| LIN0072                         | 61.0                       | 212.1      | 845.6                                          | 1.4                | 32.9       | 5,87.5                                         | 1.6                | 761,160                               |
| LIN0072LL                       | N/A                        | 83.8       | 421.5                                          | 1.4                | 83.8       | 44.2                                           | 1.6                | 148,871                               |
| LIN0005sub                      | 28.1                       | 97.6       | 269.1                                          | 5.7                | 15.1       | 162.7                                          | 2.2                | 370,480                               |
| ISR0022                         | 29.0                       | 100.8      | 444.9                                          | 1.5                | 15.6       | 1,238.3                                        | 2.6                | 489,398                               |
| CAR0001                         | 17.0                       | 59.2       | 738.4                                          | 1.1                | 9.2        | 986.5                                          | 1.6                | 208,746                               |
| MON0155sub                      | 28.4                       | 118.9      | 3,545.1                                        | 1.6                | 10.9       | 2,709.1                                        | 1.7                | 1,857,541                             |
| BNG0005                         | 20.0                       | 69.5       | 264.7                                          | 1.6                | 10.8       | 236.7                                          | 1.4                | 90,861                                |
| BSC0013                         | 29.9                       | 104.0      | 640.2                                          | 1.5                | 16.1       | 243.5                                          | 1.3                | 261,330                               |
| BEN0022                         | 62.9                       | 190.5      | 206.1                                          | 1.9                | 35.2       | 150.2                                          | 1.5                | 218,897                               |
| MON0004sub                      | 38.0                       | 132.3      | 2,234.9                                        | 1.9                | 20.5       | 852.4                                          | 2.1                | 1,524,912                             |

 Table 4.3.1: Baseline Loads Calculations

#### 4.4 Critical Condition and Seasonality

Federal regulations (40 CFR 130.7(c)(1)) require TMDLs to take into account critical conditions for stream flow, loading, and water quality parameters. The intent of this requirement is to ensure that the water quality of the waterbody is protected during times when it is most vulnerable.

For this TMDL the critical condition is determined by assessing annual and seasonal hydrological conditions for wet and dry periods. Seasonality is captured by assessing the time period when water contact recreation is expected (May 1st - September 30th). The average hydrological condition over a 15-year period is approximately 25% high flow and 75% low flow as defined in Appendix B. Using the definition of a high flow condition as occurring when the daily flow duration interval is less than 25% and a low flow condition as occurring when the daily flow duration interval is greater than 25%, critical hydrological condition can be estimated by the percent of high or low flows during a specific period.

As stated above, Maryland's proposed fecal bacteria TMDL for the Lower Monocacy River has been determined by assessing various hydrological conditions to account for seasonal and annual averaging periods. The five conditions listed in Table 4.4.1were used to account for the critical condition.

| USGS<br>Gage | Hydr<br>Cor | ological<br>dition | Averaging<br>Period    | Water Quality<br>Data Used | Fraction<br>High Flow | Fraction<br>Low Flow | Condition Period    |
|--------------|-------------|--------------------|------------------------|----------------------------|-----------------------|----------------------|---------------------|
|              | 1           | Average            | 365 days               | All                        | 0.25                  | 0.75                 | Long Term Average   |
|              | Annua       | Wet                | 365 days               | All                        | 0.602                 | 0.398                | Jan 1997 - Jan 1998 |
| 01643000     | 7           | Dry                | 365 days               | All                        | 0.014                 | 0.986                | May 2002 - May 2003 |
| onal         | onal        | Wet                | May 1st –<br>Sept 30th | May 1st –<br>Sept 30th     | 0.520                 | 0.480                | May 1996 - Sep 1996 |
|              | Seas        | Dry                | May 1st –<br>Sept 30th | May 1st –<br>Sept 30th     | 0.000                 | 1.000                | May 2002 - Sep 2002 |
|              | _           | Average            | 365 days               | All                        | 0.25                  | 0.75                 | Long Term Average   |
|              | Annua       | Wet                | 365 days               | All                        | 0.764                 | 0.236                | Jan 1997 - Jan 1998 |
| 01643500     | 1           | Dry                | 365 days               | All                        | 0.019                 | 0.981                | May 2002 - May 2003 |
|              | onal        | Wet                | May 1st –<br>Sept 30th | May 1st –<br>Sept 30th     | 0.579                 | 0.421                | May 1996 - Sep 1996 |
|              | Seas        | Dry                | May 1st –<br>Sept 30th | May 1st –<br>Sept 30th     | 0.007                 | 0.993                | May 1997 - Sep 1997 |

| <b>Table 4.4.1:</b> | Hydrological Conditions Used to Account for Critical Condition and |
|---------------------|--------------------------------------------------------------------|
|                     | Seasonality                                                        |

The critical condition requirement is met by determining the maximum reduction per bacteria source that satisfies all hydrological conditions, and that is required to meet the water quality standard while minimizing the risk to water contact recreation. It is assumed that the reduction applied to a bacteria source category will be constant through all conditions.

The monitoring data for all stations located in the Lower Monocacy River watershed cover a sufficient temporal span (at least one year) to estimate annual and seasonal conditions.

Table 4.4.2 shows the reductions of fecal bacteria required in each subwatershed of the Lower Monocacy River to meet water quality standards for designated uses.

| Station     | Time Period              | l          | Domestic %    | Human<br>% | Livestock<br>% | Wildlife<br>% |
|-------------|--------------------------|------------|---------------|------------|----------------|---------------|
|             | A                        | Wet        | 98%           | 98%        | 98%            | 33%           |
| LIN0072     | Annual                   | Dry        | 98%           | 98%        | 98%            | 36%           |
|             | Saganal                  | Wet        | 0.80/         | 0.00/      | 0.00/          | 610/          |
|             | Seasonai                 | Dry        | 9870          | 9070       | 9870           | 0470          |
|             | Maximum Source R         | eduction   | 98%           | 98%        | 98%            | 64%           |
|             | Annual                   | Wet        | 46%           | 72%        | 47%            | 0%            |
| -           | Annuar                   | Dry        | 34%           | 68%        | 30%            | 0%            |
| LIN0005sub  | Seasonal                 | Wet        | 0%            | 0%         | 0%             | 0%            |
| -           | Seasonai                 | Dry        | 070           | 070        | 070            | 070           |
|             | Maximum Source R         | eduction   | 46%           | 72%        | 47%            | 0%            |
|             | Annual                   | Wet        | 98%           | 98%        | 98%            | 5%            |
|             |                          | Dry        | 98%           | 98%        | 98%            | 62%           |
| ISR0022     | Seasonal                 | Wet        | 98%           | 98%        | 98%            | 87%           |
| -           |                          | Dry        |               |            |                |               |
|             | Maximum Source R         | eduction   | 98%           | 98%        | 98%            | <b>87%</b>    |
|             | Annual                   | Wet        | 98%           | 98%        | 98%            | 28%           |
| G 4 D 0001  |                          | Dry        | 98%           | 98%        | 98%            | 44%           |
| CAR0001     | Seasonal                 | Wet        | 98%           | 98%        | 98%            | 63%           |
| -           | Maximum Source Reduction |            | 000/          | 000/       | 000/           | (20)          |
|             | Maximum Source R         | eduction   | 98%           | 98%        | <b>98%</b>     | <b>63%</b>    |
|             | Annual                   | Wet Draw   | 98%           | 90%        | 98%            | 9/%           |
| MON0155 aub |                          | Dry        | 98%           | 90%        | 98%            | 93%           |
| MONOISSSUO  | Seasonal                 | Dru        | 98%           | 90%        | 98%            | 88%           |
| -           | Maximum Sauraa P         | 080/       | 000/-         | 080/-      | 070/           |               |
|             | Maximum Source K         | Wet        | <b>50 / 0</b> | 9076       | 57%            | 9770          |
|             | Annual                   | Dry        | 53%           | 9770       | 52%            | 0%            |
| BNG0005     |                          | Wet        | 5570          | 1570       | 5270           | 070           |
| DIGUUUS     | Seasonal                 | Dry        | 92%           | 98%        | 77%            | 0%            |
| -           | Maximum Source R         | eduction   | 92%           | 98%        | 77%            | 0%            |
|             |                          | Wet        | 86%           | 98%        | 93%            | 0%            |
|             | Annual                   | Drv        | 32%           | 98%        | 33%            | 0%            |
| BSC0013     | ~ . I                    | Wet        | 2 ( ) (       |            | 0.10/          | 0,0           |
|             | Seasonal                 | Drv        | 96%           | 98%        | 91%            | 0%            |
| -           | Maximum Source R         | eduction   | 96%           | 98%        | 93%            | 0%            |
|             | A 1                      | Wet        | 74%           | 97%        | 0%             | 0%            |
|             | Annual                   | Dry        | 0%            | 96%        | 0%             | 0%            |
| BEN0022     | Sagaral                  | Wet        | 00/           | 0.00/      | 720/           | 00/           |
|             | Seasonal                 | Dry        | 0%            | 98%        | /3%            | 0%            |
|             | Maximum Source R         | eduction   | 74%           | 98%        | 73%            | 0%            |
|             | Annual                   | Wet        | 98%           | 88%        | 98%            | 80%           |
|             | Amiluar                  | Dry        | 98%           | 88%        | 98%            | 46%           |
| MON0004sub  | Seasonal                 | Wet<br>Dry | 98%           | 88%        | 98%            | 81%           |
|             | Maximum Source R         | eduction   | 98%           | 88%        | 98%            | 81%           |

 Table 4.4.2: Required Reductions of Fecal Bacteria to Meet Water Quality Standards

#### 4.5 Margin of Safety

A margin of safety (MOS) is required as part of this TMDL in recognition of the many uncertainties in the understanding and simulation of bacteriological water quality in natural systems and in statistical estimates of indicators. As mentioned in Section 4.1, it is difficult to estimate stream loadings for fecal bacteria due to the variation in loadings across sample locations and time. Load estimation methods should be both precise and accurate to obtain the true estimate of the mean load. Refined precision in the load estimation is due to using a stratified approach along the flow duration intervals, thus reducing the variation in the estimates. Moreover, Richards (1998) reports that averaging methods are generally biased, and the bias increases as the size of the averaging window increases. Finally, accuracy in the load estimation is based on minimal bias in the final result when compared to the true value.

Based on EPA guidance, the MOS can be achieved through two approaches (EPA, April 1991). One approach is to reserve a portion of the loading capacity as a separate term in the TMDL (i.e., TMDL = LA + WLA + MOS). The second approach is to incorporate the MOS as conservative assumptions used in the TMDL analysis. For this TMDL, the second approach was used by estimating the loading capacity of the stream based on a reduced (more stringent) water quality criterion concentration. The *E. coli* water quality criterion concentration was reduced by 5%, from 126 *E. coli* MPN/100ml to 119.7 *E. coli* MPN/100ml.

#### 4.6 Scenario Descriptions

#### **Source Distribution**

The final bacteria source distribution and corresponding baseline loads are derived from the source proportions listed in Table 2.4.3. For the purposes of the TMDL analysis and allocations, the percentage of sources identified as "unknown" were removed and the known sources were then scaled up proportionally so that they totaled 100%. The source distribution and baseline loads used in the TMDL scenarios are presented in Table 4.6.1. The source distributions for subwatersheds MON0155sub, LIN0005sub and MON0004sub, were based on the sources identified at stations MON0155, LIN0005, and MON0004, respectively.

|            | I     | Domestic                                      |       | Human                                         | ]     | Livestock                                     |       | Wildlife                                      |                                                     |
|------------|-------|-----------------------------------------------|-------|-----------------------------------------------|-------|-----------------------------------------------|-------|-----------------------------------------------|-----------------------------------------------------|
| Station    | %     | Load<br>(Billion MPN<br><i>E. coli</i> /year) | Total Load<br>(Billion MPN<br><i>E. coli</i> /year) |
| BEN0022    | 22.9% | 50,154                                        | 21.9% | 47,924                                        | 29.5% | 64,481                                        | 25.7% | 56,338                                        | 218,897                                             |
| BNG0005    | 37.8% | 34,312                                        | 12.0% | 10,901                                        | 32.8% | 29,790                                        | 17.5% | 15,858                                        | 90,861                                              |
| BSC0013    | 26.8% | 69,928                                        | 31.5% | 82,276                                        | 26.3% | 68,836                                        | 15.4% | 40,290                                        | 261,330                                             |
| CAR0001    | 27.3% | 56,983                                        | 18.9% | 39,497                                        | 35.3% | 73,697                                        | 18.5% | 38,569                                        | 208,746                                             |
| ISR0022    | 33.4% | 163,692                                       | 13.2% | 64,586                                        | 33.6% | 164,227                                       | 19.8% | 96,892                                        | 489,398                                             |
| LIN0005sub | 31.5% | 116,842                                       | 14.8% | 54,716                                        | 32.8% | 121,546                                       | 20.9% | 77,377                                        | 370,480                                             |
| LIN0072    | 24.4% | 185,346                                       | 15.4% | 116,967                                       | 34.1% | 259,687                                       | 26.2% | 199,160                                       | 761,160                                             |
| MON0004sub | 23.3% | 356,040                                       | 21.8% | 332,461                                       | 35.2% | 536,735                                       | 19.7% | 299,676                                       | 1,524,912                                           |
| MON0155sub | 21.0% | 390,349                                       | 14.9% | 276,127                                       | 36.1% | 670,397                                       | 28.0% | 520,668                                       | 1,857,541                                           |

# Table 4.6.1: Bacteria Source Distributions and Corresponding Baseline Loads Used in the TMDL Analysis

#### **First Scenario: Fecal Bacteria Practicable Reduction Targets**

The maximum practicable reduction (MPR) for each of the four source categories is listed in Table 4.6.2. These values are based on review of the available literature and best professional judgment. It is assumed that human sources would potentially have the highest risk of causing gastrointestinal illness and therefore should have the highest reduction. If a domestic WWTP is located in the upstream watershed, this is considered in the MPR so as to not violate the permitted loads. The domestic animal category includes sources from pets (e.g., dogs) and the MPR is based on an estimated success of education and outreach programs.

| Max Practicable         | Human                                                                                                                                                                                         | Domestic                                                                                                                                    | Livestock                                                                                               | Wildlife                                                                                                                                                                                                                                                                      |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reduction per<br>Source | 95%                                                                                                                                                                                           | 75%                                                                                                                                         | 75%                                                                                                     | 0%                                                                                                                                                                                                                                                                            |
| Rationale               | <ul> <li>(a) Direct source inputs.</li> <li>(b) Human pathogens more prevalent in humans than animals.</li> <li>(c) Enteric viral diseases spread from human to human.<sup>1</sup></li> </ul> | Target goal reflects<br>uncertainty in<br>effectiveness of urban<br>BMPs <sup>2</sup> and is also<br>based on best<br>professional judgment | Target goal based on<br>sediment reductions<br>from BMPs <sup>3</sup> and best<br>professional judgment | No programmatic<br>approaches for<br>wildlife reduction to<br>meet water quality<br>standards.<br>Waters contaminated<br>by wild animal wastes<br>offer a public health<br>risk that is orders of<br>magnitude less than<br>that associated with<br>human waste. <sup>4</sup> |

 Table 4.6.2: Maximum Practicable Reduction Targets

<sup>1</sup>Health Effects Criteria for Fresh Recreational Waters. EPA-600/1-84-004. U.S. Environmental Protection Agency, Washington, DC. EPA. 1984.

<sup>2</sup>Preliminary Data Summary of Urban Storm Water Best Management Practices. EPA-821-R-99-012. U.S. Environmental Protection Agency, Washington, DC. EPA. 1999.

<sup>3</sup>Agricultural BMP Descriptions as Defined for The Chesapeake Bay Program Watershed Model. Nutrient Subcommittee Agricultural Nutrient Reduction Workshop. EPA. 2004.

<sup>4</sup>Environmental Indicators and Shellfish Safety. 1994. Edited by Cameron, R., Mackeney and Merle D. Pierson, Chapman & Hall.

As previously stated, these maximum practicable reduction targets are based on the available literature and best professional judgment. There is much uncertainty with estimated reductions from best management practices (BMP). The BMP efficiency for bacteria reduction ranged from -6% to +99% based on a total of 10 observations (US EPA 1999). The MPR to agricultural lands was based on sediment reductions identified by EPA (US EPA 2004).

The practicable reduction scenario was developed based on an optimization analysis whereby a subjective estimate of risk was minimized and constraints were set on maximum reduction and allowable background conditions. Risk was defined on a scale of one to five, where it was assumed that human sources had the highest risk (5), domestic animals and livestock next (3), and wildlife the lowest (1) (See Table 4.6.2). The model was defined as follows:

Risk Score = Min 
$$\sum_{i=1}^{4} P_j^* W_j$$
 (15)

Where

$$P_{j} = \frac{(1 - R_{i}) * Pb_{j}}{1 - TR}$$
(16)

and

$$TR = \frac{C - C_{cr}}{C} \tag{17}$$

Therefore the risk score can be represented as:

$$Risk \ Score = Min \sum_{i=1}^{4} \left[ \frac{(1-R_{j}) * Pb_{j}}{(1-\frac{C-Ccr}{C})} * W_{j} \right]$$
(18)

where

i = hydrological condition

j = bacteria source category =human, domestic animal, livestock and wildlife

 $P_j = \%$  of each source category (human, domestic animals, livestock and wildlife) in final allocation

 $W_i$  = Weigh of risk per source category = 5, 3 or 1

 $R_j$ = percent reduction applied by source category (human, domestic animals, livestock and wildlife) for the specified hydrological condition (variable)

 $Pb_i$  = original (baseline) percent distribution by source category (variable)

TR = total reduction (constant within each hydrological condition) = Target reduction

C = In-stream concentration

Ccr = Water quality criterion

The model is subject to the following constraints:

$$\begin{array}{l} C = Ccr \\ 0 <= R_{human} <= 95\% \\ 0 <= R_{pets} <= 75\% \\ 0 <= R_{livestock} <= 75\% \\ R_{wildlife} = 0 \\ P_{j} >= 1\% \end{array}$$

In eight of nine subwatersheds, the constraints of this scenario could not be satisfied, indicating there was not a practicable solution. A summary of the first scenario analysis results is presented in Table 4.6.3.

| Station    | Domestic % | Human<br>% | Livestock % | Wildlife<br>% | Achievable |
|------------|------------|------------|-------------|---------------|------------|
| BEN0022    | 75.0%      | 95.0%      | 75.0%       | 0.0%          | No         |
| BNG0005    | 75.0%      | 95.0%      | 75.0%       | 0.0%          | No         |
| BSC0013    | 75.0%      | 95.0%      | 75.0%       | 0.0%          | No         |
| CAR0001    | 75.0%      | 95.0%      | 75.0%       | 0.0%          | No         |
| ISR0022    | 75.0%      | 95.0%      | 75.0%       | 0.0%          | No         |
| LIN0005sub | 46%        | 72%        | 47%         | 0.0%          | Yes        |
| LIN0072    | 75.0%      | 95.0%      | 75.0%       | 0.0%          | No         |
| MON0004sub | 75.0%      | 95.0%      | 75.0%       | 0.0%          | No         |
| MON0155sub | 75.0%      | 95.0%      | 75.0%       | 0.0%          | No         |

| Table 4.6.3: | Practicable | Reduction | Scenario | Results |
|--------------|-------------|-----------|----------|---------|
|--------------|-------------|-----------|----------|---------|

### Second Scenario: Fecal Bacteria Reductions Higher than Maximum Practicable Reductions

The TMDL must specify load allocations that will meet the water quality standards. In the practicable reduction targets scenario, only one of the subwatersheds of Lower Monocacy River could meet water quality standards based on MPRs.

To further develop the TMDL, a second scenario was analyzed in which the constraints on the MPRs were relaxed in the subwatersheds where water quality attainment was not achievable with MPRs. In these subwatersheds, the maximum allowable reduction was increased to 98% for all sources, including wildlife. A similar optimization procedure was used to minimize risk. Again, the objective is to minimize the sum of the risk for all conditions while meeting the scenario reduction constraints. The model was defined in the same manner as shown in the practicable reduction scenario but subject to the following constraints:

C = Ccr  $0 \le R_i \le 98\%$  $P_i \ge 1\%$ 

The summary of the analysis is presented in Table 4.6.4.

| Station    | Domestic<br>(%) | Human<br>(%) | Livestock<br>(%) | Wildlife<br>(%) | Target<br>Reduction |
|------------|-----------------|--------------|------------------|-----------------|---------------------|
| BEN0022    | 73.7%           | 98.0%        | 72.9%            | 0.0%            | 59.8%               |
| BNG0005    | 92.1%           | 98.0%        | 76.9%            | 0.0%            | 71.7%               |
| BSC0013    | 95.6%           | 98.0%        | 93.4%            | 0.0%            | 81.0%               |
| CAR0001    | 98.0%           | 98.0%        | 98.0%            | 62.6%           | 91.5%               |
| ISR0022    | 98.0%           | 98.0%        | 98.0%            | 86.8%           | 95.8%               |
| LIN0005sub | 46.0%           | 72.5%        | 47.1%            | 0.0%            | 40.7%               |
| LIN0072    | 98.0%           | 98.0%        | 98.0%            | 64.1%           | 89.1%               |
| MON0004sub | 98.0%           | 88.5%        | 98.0%            | 81.3%           | 92.6%               |
| MON0155sub | 98.0%           | 90.0%        | 98.0%            | 97.3%           | 96.6%               |

# Table 4.6.4: TMDL Scenario Results: Percent Reductions Based on Optimization Model Allowing Up to 98% Reduction

#### 4.7 TMDL Loading Caps

The TMDL loading cap is an estimate of the assimilative capacity of the monitored watershed. Estimation of the TMDL requires knowledge of how bacteria concentrations vary with flow rate or the flow duration interval. This relationship between concentration and flow is established using the strata defined by the flow duration curve.

The TMDL loading caps are provided in billion MPN *E. coli*/day. These loading caps are for the nine subwatersheds located upstream of their respective monitoring stations: BEN0022, BNG0055, BSC0013, CAR0001, ISR0022, LIN0005sub, LIN0072, MON0004sub, and MON0155sub.

#### Annual Average TMDL Loading Caps

As explained in the sections above, the annual average TMDL loading caps are estimated by first determining the baseline or current condition loads for each subwatershed and the associated geometric mean from the available monitoring data. This annual average baseline load is estimated using the geometric mean concentration and average daily flow for each flow stratum.

The loads from these two strata are then weighted to represent average conditions (see Table 4.3.1), based on the proportion of each stratum, to estimate the total long-term loading rate.

Next, the percent reduction required to meet the water quality criterion is estimated from the observed bacteria concentrations accounting for the critical conditions (See Section 4.4). A reduction in concentration is proportional to a reduction in load; thus the TMDL is equal to the current baseline load multiplied by one minus the required reduction. This reduction, estimated as explained in Section 4.4, represents the maximum reduction per source that satisfies all hydrological conditions in each subwatershed, and is required to meet water quality standards.

$$TMDL = L_b * (1 - R) \tag{19}$$

where

 $L_b$  = Current or baseline load estimated from monitoring data

R = Reduction required from baseline to meet water quality criterion.

The annual average bacteria TMDL loading caps for the subwatersheds are shown in Tables 4.7.1 and 4.7.2.

| Station    | Baseline Load<br>(Billion MPN<br><i>E. coli</i> /year) | TMDL Loading<br>Caps<br>(Billion MPN<br><i>E. coli</i> /year) | % Target<br>Reduction |  |
|------------|--------------------------------------------------------|---------------------------------------------------------------|-----------------------|--|
| BEN0022    | 218,897                                                | 87,950                                                        | 59.8%                 |  |
| BNG0005    | 90,861                                                 | 25,679                                                        | 71.7%                 |  |
| BSC0013    | 261,330                                                | 49,585                                                        | 81.0%                 |  |
| CAR0001    | 208,746 17,811                                         |                                                               | 91.5%                 |  |
| ISR0022    | 489,398                                                | 20,656                                                        | 95.8%                 |  |
| LIN0005sub | 370,480                                                | 219,857                                                       | 40.7%                 |  |
| LIN0072    | 761,160                                                | 82,739                                                        | 89.1%                 |  |
| MON0004sub | 1,524,912                                              | 112,257                                                       | 92.6%                 |  |
| MON0155sub | 1,857,541                                              | 62,995                                                        | 96.6%                 |  |
| Total      | 5,783,325                                              | 679,529                                                       | 88.3%                 |  |

#### Table 4.7.1: Lower Monocacy River Subwatersheds Annual Average TMDL Loading Caps

|            | Ι                                                          | Domestic | nestic Human Livestock Wildlife               |        |                                               |        | Human Livestock Wildlife                      |                                       |         |
|------------|------------------------------------------------------------|----------|-----------------------------------------------|--------|-----------------------------------------------|--------|-----------------------------------------------|---------------------------------------|---------|
| Station    | Station Load (Billion MPN % (Billion <i>E. coli</i> /year) |          | Load<br>(Billion MPN<br><i>E. coli</i> /year) | %      | Load<br>(Billion MPN<br><i>E. coli</i> /year) | %      | Load<br>(Billion MPN<br><i>E. coli</i> /year) | (Billion MPN<br><i>E. coli</i> /year) |         |
| BEN0022    | 15.0%                                                      | 13,198   | 1.1%                                          | 958    | 19.8%                                         | 17,457 | 64.1%                                         | 56,338                                | 87,950  |
| BNG0005    | 10.6%                                                      | 2,725    | 0.8%                                          | 218    | 26.8%                                         | 6,878  | 61.8%                                         | 15,858                                | 25,679  |
| BSC0013    | 6.2%                                                       | 3,092    | 3.3%                                          | 1,646  | 9.2%                                          | 4,557  | 81.3%                                         | 40,290                                | 49,585  |
| CAR0001    | 6.4%                                                       | 1,140    | 4.4%                                          | 790    | 8.3%                                          | 1,474  | 80.9%                                         | 14,407                                | 17,811  |
| ISR0022    | 15.8%                                                      | 3,274    | 6.3%                                          | 1,292  | 15.9%                                         | 3,285  | 62.0%                                         | 12,806                                | 20,656  |
| LIN0005sub | 28.7%                                                      | 63,071   | 6.8%                                          | 15,052 | 29.3%                                         | 64,358 | 35.2%                                         | 77,377                                | 219,857 |
| LIN0072    | 4.5%                                                       | 3,707    | 2.8%                                          | 2,339  | 6.3%                                          | 5,194  | 86.4%                                         | 71,499                                | 82,739  |
| MON0004sub | 6.3%                                                       | 7,121    | 29.6%                                         | 38,379 | 9.6%                                          | 10,735 | 54.5%                                         | 56,023                                | 112,257 |
| MON0155sub | 12.4%                                                      | 7,807    | 43.8%                                         | 27,613 | 21.3%                                         | 13,408 | 22.5%                                         | 14,167                                | 62,995  |

 Table 4.7.2:
 TMDL Loading Caps by Source Category - Annual Average Conditions

#### Maximum Daily Loads

Selection of an appropriate method for translating a TMDL based on a longer time period into one using a daily time period requires decisions regarding 1) the level of resolution, and 2) the level of protection. The level of resolution pertains to the amount of detail used in specifying the maximum daily load. The level of protection represents how often the maximum daily load is expected to be exceeded. Draft EPA/Tetra Tech guidance on daily loads (Limno-Tech 2007) provides three categories of options for both level of resolution and level of protection, and discusses these categories in detail.

For the Lower Monocacy River daily TMDL, a "representative daily load" option was selected as the level of resolution, and a value "that will be exceeded with a pre-defined probability" was selected as the level of protection. In these options, the maximum daily loads are two single daily loads that correspond to the two flow strata, with an upper bound percentile that accounts for the variability of daily loads. The upper bound percentile and the maximum daily loads were estimated following EPA's "Technical Support Document for Water Quality-Based Toxics Control" (1991 TSD) (EPA 1991); and "Approaches For Developing a Daily Load Expression for TMDLs Computed for Longer Term Averages" (EPA 2006).

There are three steps to the overall process of estimating these maximum daily loads. First, all the data available from each monitoring station are examined together by stratum. The percentile rank of the highest observed concentration (for each stratum at each station) is computed. The highest computed percentile rank is the upper boundary to be used in estimating the maximum daily loads.

Secondly, the long-term annual average TMDL (see Table 4.7.1) concentrations are estimated for both high-flow and low-flow strata. This is conducted for each station using a statistical methodology (the "Statistical Theory of Rollback," or "STR," described more fully in Appendix D).

Third, based on the estimated long-term average (LTA) TMDL concentrations, the maximum daily load (MDL) for each flow stratum at each station is estimated using the upper boundary percentile computed in the first step above. Finally, maximum daily loads are computed from these MDL concentrations and their corresponding flows.

Results of the fecal bacteria MDL analysis for the Lower Monocacy River subwatersheds are shown in Table 4.7.3

| Station Stratum |             | Maximum Daily<br>Load by Stratum<br>(Billion <i>E. coli</i><br>MPN/day) | Maximum Daily<br>Load (Weighted)<br>(Billion <i>E. coli</i><br>MPN/day) |  |  |
|-----------------|-------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|--|--|
| DEN10022        | High Flow   | 3,590                                                                   | 1 162                                                                   |  |  |
| BEIN0022        | Low Flow    | 354                                                                     | 1,105                                                                   |  |  |
| PNC0005         | High Flow   | 904                                                                     | 205                                                                     |  |  |
| BING0005        | Low Flow    | 92                                                                      | 293                                                                     |  |  |
| DSC0012         | High Flow   | 2,947                                                                   | 800                                                                     |  |  |
| BSC0013         | Low Flow 84 |                                                                         | 800                                                                     |  |  |
| C A D 0001      | High Flow   | 239                                                                     | 192                                                                     |  |  |
| CAR0001         | Low Flow    | 164                                                                     | 182                                                                     |  |  |
| 1500022         | High Flow   | 265                                                                     | 505                                                                     |  |  |
| 15K0022         | Low Flow    | 585                                                                     | 303                                                                     |  |  |
| LINIO005 aut    | High Flow   | 26,688                                                                  | 6.092                                                                   |  |  |
| LIN0005Sub      | Low Flow    | 414                                                                     | 0,982                                                                   |  |  |
| 1 100072        | High Flow   | 2,402                                                                   | 021                                                                     |  |  |
| LIN0072         | Low Flow    | 427                                                                     | 921                                                                     |  |  |
|                 | High Flow   | 7,609                                                                   | 2 170                                                                   |  |  |
| MON0004sub      | Low Flow    | 357                                                                     | 2,170                                                                   |  |  |
| MON0155 1       | High Flow   | 3,420                                                                   | 1.020                                                                   |  |  |
| MONUISSSUD      | Low Flow    | 232                                                                     | 1,029                                                                   |  |  |

 Table 4.7.3: Lower Monocacy River Watershed Maximum Daily Loads Summary

See Appendix D for a more detailed explanation of the procedure for obtaining these daily loads.

#### 4.8 TMDL Allocations

The Lower Monocacy River fecal bacteria TMDL is composed of the following components:

 $TMDL = LA_{LM} + WLA_{LM} + LA_{UM} + MOS$ 

(20)

 $\begin{array}{l} LA_{LM}-Lower \ Monocacy \ Load \ Allocation \\ WLA_{LM}-Lower \ Monocacy \ Waste \ Load \ Allocation \\ LA_{UM}-Upper \ Monocacy \ Load \ Allocation \\ MOS-Margin \ of \ Safety \end{array}$ 

The TMDL allocations for the Lower Monocacy River MD 8-digit basin include a load allocation  $(LA_{LM})$  for certain nonpoint sources, and waste load allocations  $(WLA_{LM})$  for point sources including WWTPs and NPDES-regulated stormwater discharges. The Stormwater (SW) WLA<sub>LM</sub> includes any nonpoint source loads deemed to be transported and discharged by regulated stormwater systems. An explanation of the distribution of nonpoint source loads and point source loads to the LA<sub>LM</sub> and to the SW-WLA<sub>LM</sub> and WWTP-WLA<sub>LM</sub> is provided in the subsections that follow.

In addition to these allocation categories for the MD 8-digit watershed, the Lower Monocacy River TMDL includes an upstream load allocation to account for the load from the Upper Monocacy River watershed (LA<sub>UM</sub>). The final Upper Monocacy River TMDL, determined in a separate TMDL document, constitutes the LA<sub>UM</sub> to the Lower Monocacy River. See Appendix E for further information on the upstream loads.

The margin of safety (MOS) is explicit and is incorporated in the analysis using a conservative assumption; it is not specified as a separate term. The assumption is that a 5% reduction of the criterion concentration established by MD to meet the applicable water quality standard will result in more conservative allowable loads of fecal bacteria, and thus provide the MOS. The final loads are based on average hydrological conditions, with reductions estimated based on critical hydrological conditions. The load reduction scenario results in load allocations that will achieve water quality standards. The State reserves the right to revise these allocations provided such revisions are consistent with the achievement of water quality standards.

#### **Bacteria Source Categories and Allocation Distributions**

The bacteria sources are grouped into four categories that are also consistent with divisions for various management strategies. The categories are human, domestic animal, livestock and wildlife. TMDL allocation rules are presented in Table 4.8.1. This table identifies how the TMDL will be allocated among the  $LA_{LM}$  (those nonpoint sources or portions thereof not transported and discharged by stormwater systems) and the WLA<sub>LM</sub> (point sources including WWTPs, and NPDES regulated stormwater entities). Only the final  $LA_{LM}$  or WLA<sub>LM</sub> is reported in this TMDL. Note that the assignment of a small allowable human load to the SW WLA<sub>LM</sub> is in consideration of the possible presence of such loads in the watershed beyond the reach of the sanitary sewer systems. The term "allowable load" means the load that the waterbody can assimilate and still meet water quality standards.

| Allocation | ТА | WLA   |            |  |  |  |  |
|------------|----|-------|------------|--|--|--|--|
| Category   | LA | WWTPs | Stormwater |  |  |  |  |
| Human      |    | Х     | Х          |  |  |  |  |
| Domestic   |    |       | Х          |  |  |  |  |
| Livestock  | X  |       |            |  |  |  |  |
| Wildlife   | X  |       | Х          |  |  |  |  |

#### Load Allocation (LA<sub>LM</sub>)

All four bacteria source categories could potentially contribute to nonpoint source loads. For human sources, if the watershed has no MS4s or other NPDES-regulated stormwater entities, the nonpoint source contribution is estimated by subtracting any WWTP and CSO loads from the TMDL human load, and is then assigned to the  $LA_{LM}$ . However, in watersheds covered by NPDES-regulated stormwater permits, any such nonpoint sources of human bacteria (i.e., beyond the reach of the sanitary sewer systems) are assigned to the SW WLA<sub>LM</sub>. There are 17 NPDES WWTPs with permits regulating the discharge of bacteria in the Lower Monocacy River watershed. There are no subwatersheds with assigned NPDES CSO WLA.

Livestock loads are all assigned to the  $LA_{LM}$ . Domestic animals (pets) loads are assigned to the LA in watersheds with no MS4s or other NPDES-regulated stormwater systems. Since the entire Lower Monocacy River watershed is covered by NPDES MS4 permits, bacteria loads from domestic animal sources are assigned to the SW WLA<sub>LM</sub> in all nine subwatersheds of the Lower Monocacy River. However, wildlife sources will be distributed between the LA<sub>LM</sub> and the SW WLA<sub>LM</sub>, based on a ratio of the amount of pervious non-urban and pervious urban land.

#### Waste Load Allocation (WLA<sub>LM</sub>)

#### NPDES Regulated Stormwater

Both individual and general NPDES Phase I and Phase II stormwater permits are point sources subject to WLA assignment in the TMDL. Quantification of rainfall-driven nonpoint source loads, such as those transported by stormwater through MS4s, is uncertain. EPA recognized this in its guidance document entitled "Establishing Total Maximum Daily Load (TMDL) Wasteload Allocations (WLAs) for Storm Water Sources and NPDES Permit Requirements Based on Those WLAs" (November 2002), which states that available data and information usually are not detailed enough to determine WLAs for NPDES-regulated stormwater discharges on an outfall-specific basis. Therefore, in watersheds with an existing MS4 permit, domestic animal bacteria loads are grouped together into a single SW WLA along with other potential nonpoint source loads such as human and wildlife loads. This allowable human load in the SWWLA<sub>LM</sub> is estimated by subtracting any WWTP and CSO loads from the total allowable (TMDL) human load. There are 17 NPDES WWTPs with permits regulating the discharge of bacteria in the Lower Monocacy River watershed. There are no NPDES CSO permits in the watershed. The SW WLA<sub>LM</sub> wildlife load is estimated as explained above. In watersheds with no existing NPDES-regulated stormwater permits, these loads will be included in the LA.

The jurisdictions within the Lower Monocacy River watershed, Carroll, Frederick, and Montgomery Counties, are covered by individual Phase I MS4 program regulations. Based on EPA's guidance, the Stormwater WLA<sub>LM</sub> is presented as one combined load for the entire land area of each county. In the future, when more detailed data and information become available, it is anticipated that MDE will revise the WLA into appropriate WLAs and LAs, and may also revise the LA accordingly. Note that the overall reductions in the TMDL will not change. In addition to the counties' MS4s, the Stormwater WLA<sub>LM</sub> category encompasses any other NPDES regulated Phase I and Phase II stormwater discharges in the watershed, including State

and federal entities. The Stormwater  $WLA_{LM}$  distribution between Carroll, Frederick, and Montgomery Counties is presented in Table 4.8.2.

| Station    | Stormwater WLA Loads (Billion MPN E. Coli/year) |     |           |      |            |     |         |  |  |  |  |
|------------|-------------------------------------------------|-----|-----------|------|------------|-----|---------|--|--|--|--|
|            | Carroll                                         | %   | Frederick | %    | Montgomery | %   | Total   |  |  |  |  |
| BEN0022    | 0                                               | 0%  | 10,639    | 52%  | 9,947      | 48% | 20,586  |  |  |  |  |
| BNG0005    | 0                                               | 0%  | 7,662     | 100% | 0          | 0%  | 7,662   |  |  |  |  |
| BSC0013    | 0                                               | 0%  | 12,155    | 100% | 1          | 0%  | 12,157  |  |  |  |  |
| CAR0001    | 0                                               | 0%  | 8,715     | 100% | 0          | 0%  | 8,715   |  |  |  |  |
| ISR0022    | 0                                               | 0%  | 5,755     | 100% | 0          | 0%  | 5,755   |  |  |  |  |
| LIN0005sub | 0                                               | 0%  | 95,216    | 100% | 0          | 0%  | 95,216  |  |  |  |  |
| LIN0072    | 1,855                                           | 14% | 11,543    | 86%  | 0          | 0%  | 13,398  |  |  |  |  |
| MON0004sub | 0                                               | 0%  | 11,157    | 97%  | 344        | 3%  | 11,502  |  |  |  |  |
| MON0155sub | 0                                               | 0%  | 21,050    | 100% | 0          | 0%  | 21,050  |  |  |  |  |
| Total      | 1,856                                           |     | 183,893   |      | 10,293     |     | 196,041 |  |  |  |  |

 Table 4.8.2: Annual Average Stormwater Allocations

#### Municipal and Industrial WWTP

As explained in the source assessment section above, there are seventeen municipal WWTP with permits regulating the discharge of bacteria into the Lower Monocacy River. The WLA for each WWTP is estimated using the design flow of the plant stated in the facility NPDES permit and the *E. coli* criterion of 126 MPN/100ml. Bacteria loads assigned to these WWTPs are allocated as the WWTP WLA.

#### 4.9 Summary

The long-term annual average TMDL and TMDL allocations are presented in Table 4.9.1. Table 4.9.2 presents the maximum daily loads for the subwatersheds in the Lower Monocacy River MD 8-digit basin. Table 4.9.3 presents a summary of the final long-term annual average Lower Monocacy River fecal bacteria TMDL and Table 4.9.4 provides a summary of the maximum daily loads.

| Subwatarshad                    | Total<br>Allocation              | LA      | Stormwater<br>WLA | WWTP<br>WLA |  |  |  |  |  |
|---------------------------------|----------------------------------|---------|-------------------|-------------|--|--|--|--|--|
| Subwatersneu                    | Billion MPN <i>E. Coli</i> /year |         |                   |             |  |  |  |  |  |
| BEN0022                         | 87,950                           | 67,147  | 20,586            | 218         |  |  |  |  |  |
| BNG0005                         | 25,679                           | 17,970  | 7,662             | 47          |  |  |  |  |  |
| BSC0013                         | 49,585                           | 36,435  | 12,157            | 992         |  |  |  |  |  |
| CAR0001                         | 17,811                           | 9,075   | 8,715             | 21          |  |  |  |  |  |
| ISR0022                         | 20,656                           | 14,728  | 5,755             | 174         |  |  |  |  |  |
| LIN0005sub                      | 219,857                          | 124,641 | 95,216            | N/A         |  |  |  |  |  |
| LIN0072                         | 82,739                           | 69,253  | 13,398            | 87          |  |  |  |  |  |
| MON0004sub                      | 112,257                          | 62,377  | 11,502            | 38,379      |  |  |  |  |  |
| MON0155sub                      | 62,995                           | 24,535  | 21,050            | 17,409      |  |  |  |  |  |
| Lower Monocacy<br>8-Digit Total | 679,529                          | 426,161 | 196,041           | 57,327      |  |  |  |  |  |
| Upper Monocacy<br>Upstream Load | 1,353,850                        |         |                   |             |  |  |  |  |  |
| TMDL <sup>1</sup>               | 2,033,379                        |         |                   |             |  |  |  |  |  |

 Table 4.9.1: Lower Monocacy River Watershed TMDL

<sup>1</sup>The MOS is incorporated.

| Station                          | MDL                     | LA    | Stormwater<br>WLA | WWTP<br>WLA |  |  |  |  |  |
|----------------------------------|-------------------------|-------|-------------------|-------------|--|--|--|--|--|
| Station                          | Billion MPN E. Coli/day |       |                   |             |  |  |  |  |  |
| BEN0022                          | 1,163                   | 888   | 273               | 1.85        |  |  |  |  |  |
| BNG0005                          | 295                     | 207   | 88                | 0.40        |  |  |  |  |  |
| BSC0013                          | 800                     | 588   | 204               | 8.46        |  |  |  |  |  |
| CAR0001                          | 182                     | 93    | 89                | 0.18        |  |  |  |  |  |
| ISR0022                          | 505                     | 360   | 144               | 1.48        |  |  |  |  |  |
| LIN0005sub                       | 6,982                   | 3,958 | 3,024             | N/A         |  |  |  |  |  |
| LIN0072                          | 921                     | 771   | 149               | 0.74        |  |  |  |  |  |
| MON0004sub                       | 2,170                   | 1,206 | 637               | 327.01      |  |  |  |  |  |
| MON0155sub                       | 1,029                   | 401   | 480               | 148.34      |  |  |  |  |  |
| Lower Monocacy<br>8-Digit Total* | 14,048                  | 8,471 | 5,088             | 488         |  |  |  |  |  |
| Upper Monocacy<br>Upstream Load  | 105,797                 |       |                   |             |  |  |  |  |  |
| Total                            | 119,845                 |       |                   |             |  |  |  |  |  |

 Table 4.9.2: Lower Monocacy River Watershed Maximum Daily Loads

\*This total load represents the sum of the individual MDLs of the subwatersheds presented above.

| Table 4.9.3: Lower Monocacy River Watershed Annual Average TMDL Summ | ary |
|----------------------------------------------------------------------|-----|
|----------------------------------------------------------------------|-----|

| TMDL<br>Billion MPN | = | LA <sub>LM</sub> | + | WLA <sub>LM</sub> | +    | LA <sub>UM</sub>       | + | MOS          |
|---------------------|---|------------------|---|-------------------|------|------------------------|---|--------------|
| E. Couryear         |   |                  |   | <b>Billion M</b>  | PN . | <i>E. coli</i> /year   |   |              |
| 2,033,379           | = | 426,161          | + | 253,368           | +    | 1,353,850 <sup>1</sup> | + | Incorporated |

<sup>1</sup>This upstream load is equivalent to the Upper Monocacy River TMDL.

| MDL<br>Billion MPN   | = | LA <sub>LM</sub> | + | WLA <sub>LM</sub> | + | LA <sub>UM</sub>     | + | MOS          |
|----------------------|---|------------------|---|-------------------|---|----------------------|---|--------------|
| Billion MPN E. coli/ |   |                  |   |                   |   | <i>E. coli</i> /year |   |              |
| 119,845              | = | 8,471            | + | 5,577             | + | $105,797^{1}$        | + | Incorporated |

| Table 4.9.4:  | Lower Monocacy | River     | Watershed  | Annual     | Average | MDL S | Summarv |
|---------------|----------------|-----------|------------|------------|---------|-------|---------|
| 1 abic 4.7.4. | Lower monocacy | I I I U I | viatersneu | 1 Milliuul | monuge. |       | Jummary |

<sup>1</sup>This upstream load is equivalent to the total Upper Monocacy River MDL.

In eight of the nine Lower Monocacy River subwatersheds, water quality standards cannot be achieved with the maximum practicable reduction rates specified. This occurs in watersheds that require very high reductions to meet water quality standards. However, if there is no feasible TMDL scenario, then MPRs are increased to provide estimates of the reductions required to meet water quality standards. For these watersheds, it is noted that the reductions may be beyond practical limits. In these cases, it is expected that the first stage of implementation will be to implement the MPR scenario.

#### 5.0 ASSURANCE OF IMPLEMENTATION

Section 303(d) of the Clean Water Act and current EPA regulations require reasonable assurance that the TMDL load and wasteload allocations can and will be implemented. In the Lower Monocacy River watershed, the TMDL analysis indicates that, for eight of nine subwatersheds, the reduction of fecal bacteria loads from all sources including wildlife are beyond the MPR targets. These MPR targets were defined based on a literature review of BMPs effectiveness and assuming a zero reduction for wildlife sources. The Lower Monocacy River may not be able to attain water quality standards. The fecal bacteria load reductions required to meet water quality criteria in eight of nine subwatersheds of the Lower Monocacy River are not feasible by implementing effluent limitations and cost-effective, reasonable BMPs to nonpoint sources. Therefore, MDE proposes a staged approach to implementation beginning with the MPR scenario, with regularly scheduled follow-up monitoring to assess the effectiveness of the implementation plan.

Additional reductions will be achieved through the implementation of BMPs; however, the literature reports considerable uncertainty concerning the effectiveness of BMPs in treating bacteria. As an example, pet waste education programs have varying results based on stakeholder involvement. Additionally, the extent of wildlife reduction associated with various BMPs methods (e.g., structural, non-structural, etc.) is uncertain. Therefore, MDE intends for the required reductions to be implemented in an iterative process that first addresses those sources with the largest impact on water quality and human health risk, with consideration given to ease of implementation and cost. The iterative implementation of BMPs in the watershed has several benefits: tracking of water quality improvements following BMP implementation through follow-up stream monitoring; providing a mechanism for developing public support through periodic updates on BMP implementation; and helping to ensure that the most cost-effective practices are implemented first.

Potential funding sources for implementation include the Maryland's Agricultural Cost Share Program (MACS), which provides grants to farmers to help protect natural resources, and the Environmental Quality and Incentives Program, which focuses on implementing conservation practices and BMPs on land involved with livestock and production. Though not directly linked, it is assumed that the nutrient management plans from the Water Quality Improvement Act of 1998 (WQIA) will have some reduction of bacteria from manure application practices.

#### **Implementation and Wildlife Sources**

It is expected that in some waters for which TMDLs will be developed, the bacteria source analysis indicates that after controls are in place for all anthropogenic sources, the waterbody will not meet water quality standards. Neither Maryland nor EPA is proposing the elimination of wildlife to allow for the attainment of water quality standards, although managing the overpopulation of wildlife remains an option for state and local stakeholders. After developing and implementing, to the maximum extent possible, a reduction goal based on the anthropogenic sources identified in the TMDL, Maryland anticipates that implementation to reduce the controllable nonpoint sources may also reduce some wildlife inputs to the waters.

#### REFERENCES

Cameron, R., Mackeney and Merle D. Pierson, eds. 1994. Environmental Indicators and Shellfish Safety. Chapman & Hall.

Code of Federal Regulations. 40 CFR 130.2(h), 40 CFR 130.7(c)(1). Website <u>http://www.access.gpo.gov/nara/cfr/waisidx\_04/40cfr130\_04.html</u>, last visited 06/24/06.

COMAR (Code of Maryland Regulations) 26.08.02.03-3A(1), 26.08.02.08P. Website <u>http://www.dsd.state.md.us/comar</u>, last visited 06/24/06.

COMAR 26.08.10. Website http://www.dsd.state.md.us/comar, last visited 07/29/06.

Cohn, T.A., L.L. DeLong, E.J. Gilroy, and R.M. Hirsch, and D.K. Wells. 1989. Estimating Constituent Loads. Water Resources Research 25: 937-942.

Duan, N. 1983. Smearing Estimate: A Nonparametric Retransformation method. Journal of the American Statistical Association 78:605-610.

Easton, J. H., M. M. Lalor, J. J. Gauthier and R. E. Pitt. 2001. Pathogen Decay in Urban Streams. In: AWRA Annual Spring Specialty Conference Proceedings: Water Quality Monitoring and Modeling, American Water Resources Association, San Antonio, TX, pp. 169-174.

Ferguson, R.I. 1986. River Loads Underestimated by Rating Curves. Water Resources Research 22: 74-76.

MDE (Maryland Department of the Environment). 2002. 2002 List of Impaired Surface Waters [303(d) List] and Integrated Assessment of Water Quality in Maryland.

———. 2006. 2006 List of Impaired Surface Waters [303(d) List] and Integrated Assessment of Water Quality in Maryland.

———. 2004. 2004 FINAL List of Impaired Surface Waters [303(d) List] and Integrated Assessment of Water Quality in Maryland.

——. 2002. 2002 Bacteriological TMDL Survey of Lower Monocacy River.

MDP (Maryland Department of Planning). 2002. 2002 Land Use, Land Cover Map Series.

———. Estimates of Septic Systems. 2003. Baltimore: Maryland Department of Planning, Comprehensive Planning Unit.

Richards, R.P. 1998. Estimation of pollutant loads in rivers and streams: A guidance document for NPS programs. Project report prepared under Grant X998397-01-0, U.S. Environmental Protection Agency, Region VIII, Denver. 108 p.

Schueler, T. 1999. "Microbes and Urban Watersheds." Watershed Protection Techniques. 3(1): 551-596.

.U.S. Department of Commerce. 2000. United States Census Bureau's GIS Coverage. Washington DC: US Bureau of the Census.

———. 1997. Census of Agriculture: Maryland State and County Data. Washington, DC: National Agricultural Statistic Service.

US EPA (U.S. Environmental Protection Agency). 1986. Ambient Water Quality Criteria for Bacteria--1986. EPA-440/5-84-002.

———. 1991. Guidance for water quality-based decisions: The TMDL Process, EPA 440/4-91-001.

——. 2002. *National Recommended Water Quality Criteria: 2002.* EPA-822-R-02-047. November 2002.

———. 1984. Health Effects Criteria for Fresh Recreational Waters. EPA-600/1-84-004. U.S. Environmental Protection Agency, Washington, DC. EPA.

———. 1999. Preliminary Data Summary of Urban Storm Water Best Management Practices. EPA-821-R-99-012. U.S. Environmental Protection Agency, Washington, DC.

———. 2004. Agricultural BMP Descriptions as Defined for The Chesapeake Bay Program Watershed Model. Nutrient Subcommittee Agricultural Nutrient Reduction Workshop.

———. 2003. Implementation Guidance for Ambient Water Quality Criteria for Bacteria: Draft, U.S. Environmental Protection Agency. Office of Water, Washington, D.C. EPA-823-B-02-003.

———. 1985. Test Methods for Eschericichia coli and Enterococci in Water by the Membrane Filter Procedure. EPA600/4-85-076. Washington, DC. NTIS PB86-158052.

USGS (U.S. Geological Survey). 1996. HYSEP: A Computer Program for Streamflow Hydrograph Separation and Analysis. USGS Water-Resource Investigations Report 96-4040.

University of Maryland, Mid-Atlantic Regional Earth Science Applications Center, version 1.05, 2000.

#### Appendix A – Bacteria Data

| Sampling<br>Station<br>Identifier | Date       | Daily flow<br>frequency | <i>E. coli</i><br>MPN/100ml |
|-----------------------------------|------------|-------------------------|-----------------------------|
| BEN0022                           | 11/03/2003 | 12.4215                 | 350                         |
| BEN0022                           | 11/17/2003 | 20.2093                 | 110                         |
| BEN0022                           | 12/01/2003 | 8.7892                  | 300                         |
| BEN0022                           | 12/15/2003 | 2.6756                  | 1330                        |
| <b>BEN0022</b>                    | 01/06/2004 | 15.3064                 | 500                         |
| BEN0022                           | 01/21/2004 | 40.9865                 | 10                          |
| <b>BEN0022</b>                    | 02/04/2004 | 16.3079                 | 230                         |
| <b>BEN0022</b>                    | 02/18/2004 | 20.5082                 | 20                          |
| <b>BEN0022</b>                    | 03/02/2004 | 24.7982                 | 60                          |
| <b>BEN0022</b>                    | 03/16/2004 | 23.9013                 | 100                         |
| <b>BEN0022</b>                    | 04/06/2004 | 12.4215                 | 110                         |
| BEN0022                           | 04/20/2004 | 16.3079                 | 180                         |
| BEN0022                           | 05/11/2004 | 32.7952                 | 100                         |
| <b>BEN0022</b>                    | 05/25/2004 | 29.8356                 | 220                         |
| <b>BEN0022</b>                    | 06/08/2004 | 33.2735                 | 600                         |
| BEN0022                           | 06/22/2004 | 46.9656                 | 160                         |
| <b>BEN0022</b>                    | 07/07/2004 | 58.8640                 | 170                         |
| <b>BEN0022</b>                    | 07/20/2004 | 65.3363                 | 200                         |
| BEN0022                           | 08/10/2004 | 98.4155                 | 110                         |
| BEN0022                           | 08/24/2004 | 96.3378                 | 120                         |
| BEN0022                           | 09/08/2004 | 21.0463                 | 1400                        |
| BEN0022                           | 09/21/2004 | 68.9985                 | 700                         |
| <b>BEN0022</b>                    | 10/05/2004 | 61.0463                 | 180                         |
| <b>BEN0022</b>                    | 10/19/2004 | 61.0463                 | 110                         |
| BNG0005                           | 11/03/2003 | 21.3668                 | 200                         |
| BNG0005                           | 11/17/2003 | 27.4097                 | 60                          |

### Table A-1: Measured Bacteria Concentration with Daily Flow Frequency

| Sampling<br>Station<br>Identifier | Date       | Daily flow<br>frequency | <i>E. coli</i><br>MPN/100ml |
|-----------------------------------|------------|-------------------------|-----------------------------|
| BNG0005                           | 12/01/2003 | 13.0856                 | 230                         |
| BNG0005                           | 12/15/2003 | 4.5807                  | 1190                        |
| BNG0005                           | 01/06/2004 | 12.9961                 | 300                         |
| BNG0005                           | 01/21/2004 | 61.5339                 | 60                          |
| BNG0005                           | 02/04/2004 | 20.8744                 | 600                         |
| BNG0005                           | 02/18/2004 | 30.1850                 | 50                          |
| BNG0005                           | 03/02/2004 | 20.8744                 | 50                          |
| BNG0005                           | 03/16/2004 | 31.7816                 | 120                         |
| BNG0005                           | 04/06/2004 | 16.0400                 | 120                         |
| BNG0005                           | 04/20/2004 | 21.0534                 | 100                         |
| BNG0005                           | 05/11/2004 | 36.4369                 | 450                         |
| BNG0005                           | 05/25/2004 | 43.0916                 | 370                         |
| BNG0005                           | 06/08/2004 | 18.0842                 | 1080                        |
| BNG0005                           | 06/22/2004 | 41.1668                 | 500                         |
| BNG0005                           | 07/07/2004 | 63.2199                 | 560                         |
| BNG0005                           | 07/20/2004 | 68.5915                 | 310                         |
| BNG0005                           | 08/10/2004 | 71.5309                 | 230                         |
| BNG0005                           | 08/24/2004 | 63.9958                 | 190                         |
| BNG0005                           | 09/08/2004 | 79.7523                 | 1240                        |
| BNG0005                           | 09/21/2004 | 50.8953                 | 290                         |
| BNG0005                           | 10/05/2004 | 41.1221                 | 380                         |
| BNG0005                           | 10/19/2004 | 60.4745                 | 220                         |
| BSC0013                           | 11/03/2003 | 21.3668                 | 200                         |
| BSC0013                           | 11/17/2003 | 27.4097                 | 300                         |
| BSC0013                           | 12/01/2003 | 13.0856                 | 880                         |
| BSC0013                           | 12/15/2003 | 4.5807                  | 2140                        |
| <b>BSC0013</b>                    | 01/06/2004 | 12.9961                 | 1270                        |
| <b>BSC0013</b>                    | 01/21/2004 | 61.5339                 | 40                          |
| <b>BSC0013</b>                    | 02/18/2004 | 30.1850                 | 170                         |
| BSC0013                           | 03/02/2004 | 20.8744                 | 50                          |

| Sampling<br>Station<br>Identifier | Date       | Daily flow<br>frequency | <i>E. coli</i><br>MPN/100ml |
|-----------------------------------|------------|-------------------------|-----------------------------|
| BSC0013                           | 03/16/2004 | 31.7816                 | 90                          |
| BSC0013                           | 04/06/2004 | 16.0400                 | 760                         |
| BSC0013                           | 04/20/2004 | 21.0534                 | 1450                        |
| BSC0013                           | 05/11/2004 | 36.4369                 | 420                         |
| BSC0013                           | 05/25/2004 | 43.0916                 | 240                         |
| BSC0013                           | 06/08/2004 | 18.0842                 | 1070                        |
| BSC0013                           | 06/22/2004 | 41.1668                 | 230                         |
| BSC0013                           | 07/07/2004 | 63.2199                 | 400                         |
| BSC0013                           | 07/20/2004 | 68.5915                 | 300                         |
| BSC0013                           | 08/10/2004 | 71.5309                 | 490                         |
| BSC0013                           | 08/24/2004 | 63.9958                 | 320                         |
| BSC0013                           | 09/08/2004 | 79.7523                 | 930                         |
| BSC0013                           | 09/21/2004 | 50.8953                 | 540                         |
| BSC0013                           | 10/05/2004 | 41.1221                 | 260                         |
| BSC0013                           | 10/19/2004 | 60.4745                 | 60                          |
| CAR0001                           | 11/03/2003 | 21.3668                 | 820                         |
| CAR0001                           | 11/17/2003 | 27.4097                 | 360                         |
| CAR0001                           | 12/01/2003 | 13.0856                 | 350                         |
| CAR0001                           | 12/15/2003 | 4.5807                  | 740                         |
| CAR0001                           | 01/06/2004 | 12.9961                 | 420                         |
| CAR0001                           | 01/21/2004 | 61.5339                 | 130                         |
| CAR0001                           | 02/04/2004 | 20.8744                 | 1260                        |
| CAR0001                           | 02/18/2004 | 30.1850                 | 820                         |
| CAR0001                           | 03/02/2004 | 20.8744                 | 440                         |
| CAR0001                           | 03/16/2004 | 31.7816                 | 4110                        |
| CAR0001                           | 04/06/2004 | 16.0400                 | 1010                        |
| CAR0001                           | 04/20/2004 | 21.0534                 | 760                         |
| CAR0001                           | 05/11/2004 | 36.4369                 | 860                         |
| CAR0001                           | 05/25/2004 | 43.0916                 | 1500                        |
| CAR0001                           | 06/08/2004 | 18.0842                 | 1720                        |

| Sampling<br>Station<br>Identifier | Date       | Daily flow<br>frequency | <i>E. coli</i><br>MPN/100ml |
|-----------------------------------|------------|-------------------------|-----------------------------|
| CAR0001                           | 06/22/2004 | 41.1668                 | 74                          |
| CAR0001                           | 07/07/2004 | 63.2199                 | 2250                        |
| CAR0001                           | 07/20/2004 | 68.5915                 | 1080                        |
| CAR0001                           | 08/24/2004 | 63.9958                 | 1200                        |
| CAR0001                           | 09/08/2004 | 79.7523                 | 5170                        |
| CAR0001                           | 09/21/2004 | 50.8953                 | 1330                        |
| CAR0001                           | 10/05/2004 | 41.1221                 | 1150                        |
| CAR0001                           | 10/19/2004 | 60.4745                 | 2380                        |
| ISR0022                           | 11/03/2003 | 21.3668                 | 430                         |
| ISR0022                           | 11/17/2003 | 27.4097                 | 110                         |
| ISR0022                           | 12/01/2003 | 13.0856                 | 570                         |
| ISR0022                           | 12/15/2003 | 4.5807                  | 2280                        |
| ISR0022                           | 01/06/2004 | 12.9961                 | 130                         |
| ISR0022                           | 02/04/2004 | 20.8744                 | 560                         |
| ISR0022                           | 02/18/2004 | 30.1850                 | 20                          |
| ISR0022                           | 03/02/2004 | 20.8744                 | 160                         |
| ISR0022                           | 03/16/2004 | 31.7816                 | 170                         |
| ISR0022                           | 04/06/2004 | 16.0400                 | 340                         |
| ISR0022                           | 04/20/2004 | 21.0534                 | 210                         |
| ISR0022                           | 05/11/2004 | 36.4369                 | 4350                        |
| ISR0022                           | 05/25/2004 | 43.0916                 | 2900                        |
| ISR0022                           | 06/08/2004 | 18.0842                 | 1470                        |
| ISR0022                           | 06/22/2004 | 41.1668                 | 276                         |
| ISR0022                           | 07/07/2004 | 63.2199                 | 11200                       |
| ISR0022                           | 07/20/2004 | 68.5915                 | 7700                        |
| ISR0022                           | 08/10/2004 | 71.5309                 | 3870                        |
| ISR0022                           | 08/24/2004 | 63.9958                 | 2380                        |
| ISR0022                           | 09/08/2004 | 79.7523                 | 2490                        |
| ISR0022                           | 09/21/2004 | 50.8953                 | 7270                        |
| ISR0022                           | 10/05/2004 | 41.1221                 | 1400                        |
| Sampling<br>Station<br>Identifier | Date       | Daily flow<br>frequency | <i>E. coli</i><br>MPN/100ml |  |
|-----------------------------------|------------|-------------------------|-----------------------------|--|
| ISR0022                           | 10/19/2004 | 60.4745                 | 760                         |  |
| LIN0005                           | 11/03/2003 | 21.3668                 | 170                         |  |
| LIN0005                           | 11/17/2003 | 27.4097                 | 620                         |  |
| LIN0005                           | 12/01/2003 | 13.0856                 | 5170                        |  |
| LIN0005                           | 12/15/2003 | 4.5807                  | 1190                        |  |
| LIN0005                           | 01/06/2004 | 12.9961                 | 10                          |  |
| LIN0005                           | 01/21/2004 | 61.5339                 | 10                          |  |
| LIN0005                           | 02/04/2004 | 20.8744                 | 20                          |  |
| LIN0005                           | 02/18/2004 | 30.1850                 | 30                          |  |
| LIN0005                           | 03/02/2004 | 20.8744                 | 10                          |  |
| LIN0005                           | 03/16/2004 | 31.7816                 | 20                          |  |
| LIN0005                           | 04/06/2004 | 16.0400                 | 2610                        |  |
| LIN0005                           | 04/20/2004 | 21.0534                 | 160                         |  |
| LIN0005                           | 05/11/2004 | 36.4369                 | 40                          |  |
| LIN0005                           | 05/25/2004 | 43.0916                 | 70                          |  |
| LIN0005                           | 06/08/2004 | 18.0842                 | 350                         |  |
| LIN0005                           | 06/22/2004 | 41.1668                 | 30                          |  |
| LIN0005                           | 07/07/2004 | 63.2199                 | 120                         |  |
| LIN0005                           | 07/20/2004 | 68.5915                 | 90                          |  |
| LIN0005                           | 08/10/2004 | 71.5309                 | 90                          |  |
| LIN0005                           | 08/24/2004 | 63.9958                 | 120                         |  |
| LIN0005                           | 09/08/2004 | 79.7523                 | 670                         |  |
| LIN0005                           | 09/21/2004 | 50.8953                 | 440                         |  |
| LIN0005                           | 10/05/2004 | 41.1221                 | 840                         |  |
| LIN0005                           | 10/19/2004 | 60.4745                 | 130                         |  |
| LIN0072                           | 11/03/2003 | 21.3668                 | 910                         |  |
| LIN0072                           | 11/17/2003 | 27.4097                 | 420                         |  |
| LIN0072                           | 12/01/2003 | 13.0856                 | 700                         |  |
| LIN0072                           | 12/15/2003 | 4.5807                  | 3260                        |  |
| LIN0072                           | 01/06/2004 | 12.9961                 | 770                         |  |

| Sampling<br>Station<br>Identifier | Date       | Daily flow<br>frequency | <i>E. coli</i><br>MPN/100ml |  |
|-----------------------------------|------------|-------------------------|-----------------------------|--|
| LIN0072                           | 01/21/2004 | 61.5339                 | 60                          |  |
| LIN0072                           | 02/04/2004 | 20.8744                 | 1150                        |  |
| LIN0072                           | 02/18/2004 | 30.1850                 | 90                          |  |
| LIN0072                           | 03/02/2004 | 20.8744                 | 190                         |  |
| LIN0072                           | 03/16/2004 | 31.7816                 | 160                         |  |
| LIN0072                           | 04/06/2004 | 16.0400                 | 310                         |  |
| LIN0072                           | 04/20/2004 | 21.0534                 | 820                         |  |
| LIN0072                           | 05/11/2004 | 36.4369                 | 750                         |  |
| LIN0072                           | 05/25/2004 | 43.0916                 | 1500                        |  |
| LIN0072                           | 06/08/2004 | 18.0842                 | 2490                        |  |
| LIN0072                           | 06/22/2004 | 41.1668                 | 148                         |  |
| LIN0072                           | 07/07/2004 | 63.2199                 | 1520                        |  |
| LIN0072                           | 07/20/2004 | 68.5915                 | 1990                        |  |
| LIN0072                           | 08/10/2004 | 71.5309                 | 1720                        |  |
| LIN0072                           | 08/24/2004 | 63.9958                 | 700                         |  |
| LIN0072                           | 09/08/2004 | 79.7523                 | 2040                        |  |
| LIN0072                           | 09/21/2004 | 50.8953                 | 860                         |  |
| LIN0072                           | 10/05/2004 | 41.1221                 | 1110                        |  |
| LIN0072                           | 10/19/2004 | 60.4745                 | 800                         |  |
| MON0004                           | 11/03/2003 | 21.3668                 | 210                         |  |
| MON0004                           | 11/17/2003 | 27.4097                 | 70                          |  |
| <b>MON0004</b>                    | 12/01/2003 | 13.0856                 | 1050                        |  |
| MON0004                           | 12/15/2003 | 4.5807                  | 1140                        |  |
| MON0004                           | 01/06/2004 | 12.9961                 | 540                         |  |
| <b>MON0004</b>                    | 01/21/2004 | 61.5339                 | 20                          |  |
| MON0004                           | 02/18/2004 | 30.1850                 | 10                          |  |
| <b>MON0004</b>                    | 03/02/2004 | 20.8744                 | 30                          |  |
| MON0004                           | 03/16/2004 | 31.7816                 | 30                          |  |
| MON0004                           | 04/06/2004 | 16.0400                 | 330                         |  |
| MON0004                           | 04/20/2004 | 21.0534                 | 50                          |  |

| Sampling<br>Station<br>Identifier | Date       | Daily flow<br>frequency | <i>E. coli</i><br>MPN/100ml |  |
|-----------------------------------|------------|-------------------------|-----------------------------|--|
| <b>MON0004</b>                    | 05/11/2004 | 36.4369                 | 250                         |  |
| MON0004                           | 05/25/2004 | 43.0916                 | 100                         |  |
| MON0004                           | 06/08/2004 | 18.0842                 | 1580                        |  |
| MON0004                           | 06/22/2004 | 41.1668                 | 200                         |  |
| MON0004                           | 07/07/2004 | 63.2199                 | 880                         |  |
| MON0004                           | 07/20/2004 | 68.5915                 | 30                          |  |
| MON0004                           | 08/10/2004 | 71.5309                 | 90                          |  |
| MON0004                           | 08/24/2004 | 63.9958                 | 120                         |  |
| MON0004                           | 09/08/2004 | 79.7523                 | 190                         |  |
| MON0004                           | 09/21/2004 | 50.8953                 | 720                         |  |
| MON0004                           | 10/05/2004 | 41.1221                 | 710                         |  |
| MON0004                           | 10/19/2004 | 60.4745                 | 70                          |  |
| MON0155                           | 11/03/2003 | 21.3668                 | 350                         |  |
| MON0155                           | 11/17/2003 | 27.4097                 | 310                         |  |
| MON0155                           | 12/01/2003 | 13.0856                 | 1380                        |  |
| MON0155                           | 12/15/2003 | 4.5807                  | 1110                        |  |
| MON0155                           | 01/06/2004 | 12.9961                 | 520                         |  |
| MON0155                           | 01/21/2004 | 61.5339                 | 20                          |  |
| MON0155                           | 02/04/2004 | 20.8744                 | 220                         |  |
| MON0155                           | 02/18/2004 | 30.1850                 | 30                          |  |
| MON0155                           | 03/02/2004 | 20.8744                 | 30                          |  |
| MON0155                           | 03/16/2004 | 31.7816                 | 10                          |  |
| MON0155                           | 04/06/2004 | 16.0400                 | 770                         |  |
| MON0155                           | 04/20/2004 | 21.0534                 | 110                         |  |
| MON0155                           | 05/11/2004 | 36.4369                 | 160                         |  |
| MON0155                           | 05/25/2004 | 43.0916                 | 240                         |  |
| MON0155                           | 06/08/2004 | 18.0842                 | 1020                        |  |
| MON0155                           | 06/22/2004 | 41.1668                 | 280                         |  |
| MON0155                           | 07/07/2004 | 63.2199                 | 830                         |  |
| MON0155                           | 07/20/2004 | 68.5915                 | 120                         |  |

| FINAL |
|-------|
|-------|

| Sampling<br>Station<br>Identifier | Date       | Daily flow<br>frequency | <i>E. coli</i><br>MPN/100ml |
|-----------------------------------|------------|-------------------------|-----------------------------|
| MON0155                           | 08/10/2004 | 71.5309                 | 150                         |
| MON0155                           | 08/24/2004 | 63.9958                 | 280                         |
| MON0155                           | 09/08/2004 | 79.7523                 | 150                         |
| MON0155                           | 09/21/2004 | 50.8953                 | 700                         |
| MON0155                           | 10/05/2004 | 41.1221                 | 310                         |
| MON0155                           | 10/19/2004 | 60.4745                 | 90                          |



Figure A-1: *E. coli* Concentration vs. Time for the Lower Monocacy River Monitoring Station BEN0022

FINAL



Figure A-2: *E. coli* Concentration vs. Time for the Lower Monocacy River Monitoring Station BNG0005



Figure A-3: *E. coli* Concentration vs. Time for the Lower Monocacy River Monitoring Station BSC0013

FINAL



Figure A-4: *E. coli* Concentration vs. Time for the Lower Monocacy River Monitoring Station CAR0001





FINAL



Figure A-6: *E. coli* Concentration vs. Time for the Lower Monocacy River Monitoring Station LIN0005



Figure A-7: *E. coli* Concentration vs. Time for the Lower Monocacy River Monitoring Station LIN0072

FINAL



Figure A-7: *E. coli* Concentration vs. Time for the Lower Monocacy River Monitoring Station MON0004



Figure A-7: *E. coli* Concentration vs. Time for the Lower Monocacy River Monitoring Station MON0155

#### Appendix B – Flow Duration Curve Analysis to Define Strata

The Lower Monocacy River watershed was assessed to determine hydrologically significant strata. The purpose of these strata is to apply weights to monitoring data and thus (1) reduce bias associated with the monitoring design and (2) approximate a critical condition for TMDL development. The strata group hydrologically similar water quality samples and provide a better estimate of the mean concentration at the monitoring station.

The flow duration curve for a watershed is a plot of all possible daily flows, ranked from highest to lowest, versus their probability of exceedance. In general, the higher flows will tend to be dominated by excess runoff from rain events and the lower flows will result from drought type conditions. The mid-range flows are a combination of high base flow with limited runoff and lower base flow with excess runoff. The range of these mid-level flows will vary with soil antecedent conditions. The purpose of the following analysis is to identify hydrologically significant groups, based on the previously described flow regimes, within the flow duration curve.

#### **Flow Analysis**

The Lower Monocacy River watershed has two active USGS flow gauges. The gauges and dates of information used are as follows:

| USGS<br>Gauge # | Dates used                            | Description                                     |
|-----------------|---------------------------------------|-------------------------------------------------|
| 01643000        | October 1, 1988 to September 30, 2004 | Monocacy River at Jug Bridge Near Frederick, Md |
| 01643500        | October 1, 1988 to September 30, 2004 | Bennett Creek at Park Mills, Md                 |

| Table <b>B-1</b> | USGS Gauges | in the Lower | Monocacy River     | Watershed    |
|------------------|-------------|--------------|--------------------|--------------|
| Table D-1.       | USUS Gauges |              | without a cy Kivel | vv ater sneu |

Flow duration curves for these gauges are presented in Figure B-1.

FINAL



Figure B-1: Lower Monocacy River Flow Duration Curves

Based on the long-term flow data for the Lower Monocacy River watershed and other watersheds in the region (*i.e.* Double Pipe Creek and the Upper Monocacy River), the long term average daily unit flows range between 1.2 to 1.4 cfs/sq. mile, which corresponds to a range of 21<sup>st</sup> to 28<sup>th</sup> flow frequency based on the flow duration curves of these watersheds. Using the definition of a high flow condition as occurring when flows are higher than the long-term average flow and a low flow condition as occurring when flows are lower than the long-term average flow, the 25<sup>th</sup> percentile threshold was selected to define the limits between high flows and low flows in this watershed. Therefore, a high flow condition will be defined as occurring when the daily flow duration percentile is less than 25% and a low flow condition will be defined as of high and low range flows are presented in Table B-2.

#### Table B-2: Definition of Flow Regimes

| High flow | Represents conditions where stream flow tends to be dominated by surface runoff.        |
|-----------|-----------------------------------------------------------------------------------------|
| Low flow  | Represents conditions where stream flow tends to be more dominated by groundwater flow. |

#### Flow-Data Analysis

The final analysis to define the daily flow duration intervals (flow regions, strata) includes the bacteria monitoring data. Bacteria (*E. coli*) monitoring data are "placed" within the regions (strata) based on the daily flow duration percentile of the date of sampling. Figures B-2 to B-8 show the Lower Monocacy River *E. coli* monitoring data with corresponding flow frequency for the average annual condition.

Maryland's water quality standards for bacteria state that, when available, the geometric mean indicator should be based on at least five samples taken representatively over 30 days. Therefore, in situations in which fewer than five samples "fall" within a particular flow regime interval, the interval and the adjacent interval will be joined. In the Lower Monocacy River, for the annual average flow condition, there are sufficient samples in both the high flow strata to estimate the geometric means. However, in the seasonal (May  $1^{st}$  – September  $30^{th}$ ) flow condition, there are no sufficient samples within the high flow strata to estimate geometric means; therefore, for this condition an average seasonal geometric mean will be calculated.

Weighting factors for estimating a weighted geometric mean are based on the frequency of each flow stratum during the averaging period. The weighting factors for the averaging periods and hydrological conditions are presented in Table B-3. Averaging periods are defined in this report as:

- (1) Average Annual Hydrological Condition
- (2) Annual High Flow Condition
- (3) Annual Low Flow Condition
- (4) Seasonal (May 1st September 30th) High Flow Condition

Weighted geometric means for the average annual condition are plotted with the monitoring data on Figures B-2 to B-10.

| USGS<br>Gage | Hydrological<br>Condition |         | Subwatershed | Weighting Factor<br>High Flow | Weighting Factor<br>Low Flow |
|--------------|---------------------------|---------|--------------|-------------------------------|------------------------------|
| 01643000     | Annual                    | Average | All          | 0.25                          | 0.75                         |
|              |                           | Wet     | All          | 0.602                         | 0.398                        |
|              |                           | Dry     | All          | 0.014                         | 0.986                        |
|              | Seasonal                  | Wet     | All          | 0.520                         | 0.480                        |
|              |                           | Dry     | All          | 0.000                         | 1.000                        |
| 01643500     | Annual                    | Average | All          | 0.25                          | 0.75                         |
|              |                           | Wet     | All          | 0.764                         | 0.236                        |
|              |                           | Dry     | All          | 0.019                         | 0.981                        |
|              | onal                      | Wet     | All          | 0.579                         | 0.421                        |
|              | Seas                      | Dry     | All          | 0.007                         | 0.993                        |

 Table B-3: Weighting Factors for Estimation of Geometric Mean

FINAL



Figure B-2: *E. coli* Concentration vs. Flow Duration for the Lower Monocacy River Monitoring Station BEN0022



Figure B-3: *E. coli* Concentration vs. Flow Duration for the Lower Monocacy River Monitoring Station BNG0005

FINAL



Figure B-4: *E. coli* Concentration vs. Flow Duration for the Lower Monocacy River Monitoring Station BSC0013



Figure B-5: *E. coli* Concentration vs. Flow Duration for the Lower Monocacy River Monitoring Station CAR0001

FINAL



Figure B-6: *E. coli* Concentration vs. Flow Duration for the Lower Monocacy River Monitoring Station ISR0022



Figure B-7: *E. coli* Concentration vs. Flow Duration for the Lower Monocacy River Monitoring Station LIN0005

FINAL



Figure B-8: *E. coli* Concentration vs. Flow Duration for the Lower Monocacy River Monitoring Station LIN0072



Figure B-9: *E. coli* Concentration vs. Flow Duration for the Lower Monocacy River Monitoring Station MON0005

FINAL



Figure B-10: *E. coli* Concentration vs. Flow Duration for the Lower Monocacy River Monitoring Station MON0155

**Appendix C – BST Report** 

## Identifying Sources of Fecal Pollution in Lower Monocacy River Watershed, Maryland

**June 2004 – October 2006** 

Mark F. Frana, Ph.D. and Elichia A. Venso, Ph.D. Department of Biological Sciences and Environmental Health Science Salisbury University, Salisbury, MD

October 31, 2006

### **Table of Contents**

| Introduction         | C3  |
|----------------------|-----|
| Laboratory Methods   | C4  |
| Known-Source Library | C5  |
| Statistical Analysis | C6  |
| ARA Results          | C7  |
| Summary              | C17 |
| References           | C18 |
| Acknowledgements     | C18 |

#### INTRODUCTION

**Microbial Source Tracking.** Microbial Source Tracking (MST) is a relatively recent scientific and technological innovation designed to distinguish the origins of enteric microorganisms found in environmental waters. Several different methods and a variety of different indicator organisms (both bacteria and viruses) have successfully been used for MST, as described in recent reviews (Scott et al. 2002; Simpson et al. 2002). When the indicator organism is bacteria, the term Bacterial Source Tracking (BST) is often used. Some common bacterial indicators for BST analysis include: *E. coli, Enterococcus* spp., *Bacteroides-Prevotella*, and *Bifidobacterium* spp.

Techniques for MST can be grouped into one of the following three categories: molecular (genotypic) methods, biochemical (phenotypic) methods, or chemical methods. Ribotyping, Pulsed-Field Gel Electrophoresis (PFGE), and Randomly-Amplified Polymorphic DNA (RAPD) are examples of molecular techniques. Biochemical methods include Antibiotic Resistance Analysis (ARA), F-specific coliphage typing, and Carbon Source Utilization (CSU) analysis. Chemical techniques detect chemical compounds associated with human activities, but do not provide any information regarding nonhuman sources. Examples of this type of technology include detection of optical brighteners from laundry detergents or caffeine (Simpson et al., 2002).

Many of the molecular and biochemical methods of MST are "library-based," requiring the collection of a database of fingerprints or patterns obtained from indicator organisms isolated from known sources. Statistical analysis determines fingerprints/patterns of known sources species or categories of species (i.e., human, livestock, pets, wildlife). Indicator isolates collected from water samples are analyzed using the same MST method to obtain their fingerprints or patterns, which are then statistically compared to those in the library. Based upon this comparison, the final results are expressed in terms of the "statistical probability" that the water isolates came from a given source (Simpson et al. 2002).

In this BST project, we studied the following Maryland nontidal watersheds: Antietam Creek, Concoheague Creek, Lower Monocacy River, Lower Monocacy River, and Upper Monocacy River. Also included in the study was the Potomac River Watershed shellfish harvesting area. The methodology used was the ARA with *Enterococcus* spp. as the indicator organism. Previous BST publications have demonstrated the predictive value of using this particular technique and indicator organism (Hagedorn 1999; Wiggins 1999). A pilot study using PFGE, a genotypic BST method, was used on a subset of known-source isolates collected from the Potomac River Watershed.

Antibiotic Resistance Analysis. A variety of different host species can potentially contribute to the fecal contamination found in natural waters. Many years ago, scientists speculated on the possibility of using resistance to antibiotics as a way of determining the sources of this fecal contamination (Bell et al. 1983; Krumperman 1983). In ARA, the premise is that bacteria

isolated from different hosts can be discriminated based upon differences in the selective pressure of microbial populations found in the gastrointestinal tract of those hosts (humans, livestock, pets, wildlife) (Wiggins 1996). Microorganisms isolated from the fecal material of wildlife would be expected to have a much lower level of resistance to antibiotics than isolates collected from the fecal material of humans, livestock and pets. In addition, depending upon the specific antibiotics used in the analysis, isolates from humans, livestock and pets could be differentiated from each other.

In ARA, isolates from known sources are tested for resistance or sensitivity against a panel of antibiotics and antibiotic concentrations. This information is then used to construct a library of antibiotic resistance patterns from known-source bacterial isolates. Microbial isolates collected from water samples are then tested and their resistance results are recorded. Based upon a comparison of resistance patterns of water and library isolates, a statistical analysis can predict the likely host source of the water isolates. (Hagedorn 1999; Wiggins 1999).

#### LABORATORY METHODS

**Isolation of** *Enterococcus* **from Known-Source Samples.** Fecal samples, identified to source, were delivered to the Salisbury University (SU) BST lab by Maryland Department of the Environment (MDE) personnel. Fecal material suspended in phosphate buffered saline was plated onto selective m-Enterococcus agar. After incubation at 37° C, up to eight (8) *Enterococcus* isolates were randomly selected from each fecal sample for ARA testing.

**Isolation of Enterococcus from Water Samples.** Water samples were collected by MDE staff and shipped overnight to MapTech Inc, Blacksburg, Va. Bacterial isolates were collected by membrane filtration. Up to 24 randomly selected *Enterococcus* isolates were collected from each water sample and all isolates were then shipped to the SU BST lab.

Antibiotic Resistance Analysis. Each bacterial isolate from both water and scat were grown in Enterococcosel<sup>®</sup> broth (Becton Dickinson, Sparks, MD) prior to ARA testing. *Enterococci* are capable of hydrolyzing esculin, turning this broth black. Only esculin-positive isolates were tested for antibiotic resistance.

Bacterial isolates were plated onto tryptic soy agar plates, each containing a different concentration of a given antibiotic. Plates were incubated overnight at 37° C and isolates then scored for growth (resistance) or no growth (sensitivity). Data consisting of a "1" for resistance or "0" for sensitivity for each isolate at each concentration of each antibiotic was then entered into a spread-sheet for statistical analysis.

The following table includes the antibiotics and concentrations used for isolates in analyses for all the study watersheds.

| Antibiotic        | Concentration (µg/ml) |
|-------------------|-----------------------|
| Amoxicillin       | 0.625                 |
| Cephalothin       | 10, 15, 30, 50        |
| Chloramphenicol   | 10                    |
| Chlortetracycline | 60, 80, 100           |
| Erythromycin      | 10                    |
| Gentamycin        | 5, 10, 15             |
| Neomycin          | 40, 60, 80            |
| Oxytetracycline   | 20, 40, 60, 80, 100   |
| Salinomycin       | 10                    |
| Streptomycin      | 40, 60, 80, 100       |
| Tetracycline      | 10, 30, 50, 100       |
| Vancomycin        | 2.5                   |

 Table C-1: Antibiotics and concentrations used for ARA.

#### KNOWN-SOURCE LIBRARY

**Construction and Use.** Fecal samples (scat) from known sources in each watershed were collected during the study period by MDE personnel and delivered to the BST Laboratory at SU. *Enterococcus* isolates were obtained from known sources (e.g., human, dog, cow, horse, deer, fox, rabbit, and goose). For each watershed, a library of patterns of *Enterococcus* isolate responses to the panel of antibiotics was analyzed using the statistical software CART<sup>®</sup> (Salford Systems, San Diego, CA). *Enterococcus* isolate response patterns were also obtained from bacteria in water samples collected at the monitoring stations in each basin. Using statistical techniques, these patterns were then compared to those in the appropriate library to identify the probable source of each water isolate. A combined library of known sources was used for Antietam Creek and Concocheaque Creek Watersheds using patterns from scat obtained from both watersheds, and the water isolate patterns of each were compared to the combined library. A combined known-source library was also used for Lower Monocacy River, Lower Monocacy River, and Upper Monocacy River, with water isolate patterns of each compared to this combined library.

#### STATISTICAL ANALYSIS

We applied a tree classification method,  ${}^{1}CART^{(\mathbb{R})}$ , to build a model that classifies isolates into source categories based on ARA data. CART<sup>(\mathbf{R})</sup> builds a classification tree by recursively splitting the library of isolates into two nodes. Each split is determined by the antibiotic variables (antibiotic resistance measured for a collection of antibiotics at varying concentrations). The first step in the tree-building process splits the library into two nodes by considering every binary split associated with every variable. The split is chosen that maximizes a specified index of homogeneity for isolate sources within each of the nodes. In subsequent steps, the same process is applied to each resulting node until a *stopping* criterion is satisfied. Nodes where an additional split would lead to only an insignificant increase in the *homogeneity index* relative to the *stopping* criterion are referred to as *terminal* nodes.<sup>2</sup> The collection of *terminal* nodes defines the classification model. Each *terminal* node is associated with one source, the source isolate with an unknown source), based that is most populous among the library isolates in the node. Each water sample isolate (i.e., an on its antibiotic resistance pattern, is identified with one specific *terminal* node and is assigned the source of the majority of library isolates in that *terminal* node.<sup>3</sup>

#### Lower Monocacy River Watershed ARA Results

<sup>3</sup> The CART<sup>®</sup> tree-classification method we employed includes various features to ensure the development of an optimal classification model. For brevity in exposition, we have chosen not to present details of those features, but suggest the following sources: Breiman L, et al. *Classification and Regression Trees.* Pacific Grove: Wadsworth, 1984; and Steinberg D and Colla P. *CART—Classification and Regression Trees.* San Diego, CA: Salford Systems, 1997. *Lower Monocacy River TMDL Fecal Bacteria* C6 *Document version: September 27, 2009* 

<sup>&</sup>lt;sup>1</sup> The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Hastie T, Tibshirani R, and Friedman J. Springer 2001.

 $<sup>^{2}</sup>$  An ideal split, i.e., a split that achieves the theoretical maximum for homogeneity, would produce two nodes each containing library isolates from only one source.

**Known-Source Library.** A 1,684 known-source isolate library was constructed that included 554 isolates from the Lower Monocacy River Watershed (LMO), 559 isolates from the Upper Monocacy River Watershed (UMO), combined with 571 isolates from sources in the Double Pipe Creek Watershed (DOP). The known sources in the combined library were grouped into four categories: humans, livestock (cows and horses), pets (specifically dogs), and wildlife (deer, fox, goose, muskrat, and raccoon) (see Table C-2). The library was analyzed for its ability to take a subset of the library isolates and correctly predict the identity of their host sources when they were treated as unknowns. Average rates of correct classification (ARCC) for the library were found by repeating this analysis using several probability cutoff points, as described above. The number-not-classified for each probability was determined. From these results, the percent unknown and percent correct classification (RCCs) were calculated (Table C-3).

|                   |                            |                | Unique   |
|-------------------|----------------------------|----------------|----------|
| Category          | Potential Sources          | Total Isolates | Patterns |
| Lower Monocacy F  | River Library:             |                |          |
| human             | human                      | 126            | 103      |
| livestock         | horse, cow                 | 179            | 57       |
| pet               | dog                        | 56             | 37       |
| wildlife          | deer, fox, goose, raccoon  | 193            | 44       |
| Total             |                            | 554            | 241      |
| Double Pipe Creek | Library:                   |                |          |
| human             | human                      | 96             | 69       |
| livestock         | horse, cow                 | 156            | 53       |
| pet               | dog                        | 80             | 41       |
| wildlife          | deer, fox, goose, raccoon  | 239            | 78       |
| Total             |                            | 571            | 241      |
| Upper Monocacy F  | River Library:             |                |          |
| human             | human                      | 135            | 92       |
| livestock         | horse, cow                 | 175            | 70       |
| pet               | dog                        | 86             | 52       |
|                   | deer, fox, goose, muskrat, |                |          |
| wildlife          | raccoon                    | 163            | 47       |
| Total             |                            | 559            | 261      |
| Combined DOP-Ll   | MO-UMO Library:            |                |          |
| human             | human                      | 357            | 264      |
| livestock         | cow, horse                 | 510            | 180      |
| pet               | dog                        | 222            | 130      |
| wildlife          | deer, fox, goose,          | 595            | 169      |
|                   | muskrat, raccoon           |                |          |
| Total             |                            | 1684           | 743      |

# Table C-2: Lower Monocacy River. Category, total number, and number ofunique patterns in the Lower Monocacy portion and in the combined DOP-LMOUMO known-source library.

| Table C-3: Lower Monocacy Creek. Number of isolates not classified, percent      |       |       |       |       |       |       |       |       |  |  |
|----------------------------------------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|--|--|
| unknown, and percent correct for eight (8) threshold probabilities for LMO known |       |       |       |       |       |       |       |       |  |  |
| source isolates using the combined DOP-LMO-UMO known-source library.             |       |       |       |       |       |       |       |       |  |  |
| Threshold                                                                        | 0     | 0.25  | 0.375 | 0.5   | 0.6   | 0.7   | 0.8   | 0.9   |  |  |
| % correct                                                                        | 65.5% | 65.5% | 67.7% | 73.2% | 76.1% | 82.9% | 91.6% | 96.8% |  |  |
| % unknown                                                                        | 0.0%  | 0.0%  | 4.5%  | 26.5% | 52.3% | 72.6% | 85.0% | 88.6% |  |  |
| # not classified                                                                 | 0     | 0     | 25    | 147   | 290   | 402   | 471   | 491   |  |  |

100.0% ■% correct 90.0% □% unknown 80.0% 70.0%percent correct 60.0% 50.0% 40.0% 30.0% 20.0% 10.0% 0.0% 0 0.5 0.25 0.375 0.6 0.7 0.8 0.9 threshold probability

DOP-LMO-UMO library used to predict LMO scat, threshold analysis

Figure C-1: Lower Monocacy Classification Model: Percent Correct versus Percent Unknown using a combined DOP-LMO-UMO library.

For the Lower Monocacy River Watershed, a cutoff probability of 0.50 (50%) was shown to yield an ARCC of 73 % (Table C-3). The rates of correction classification for the four categories of sources in the Lower Monocacy River portion of the library, using the cutoff probability of 0.50 (50%), are shown in Table C-4 below. The RCCs for human and pet are 74% and 88%, respectively, with 79% for wildlife, and 61% for livestock.

|           |       |           | Predi | cted     |         |       |       |
|-----------|-------|-----------|-------|----------|---------|-------|-------|
| Actual    | human | livestock | pet   | wildlife | Unknown | Total | RCC*  |
| human     | 75    | 5         | 20    | 2        | 24      | 126   | 73.5% |
| livestock | 8     | 78        | 4     | 37       | 52      | 179   | 61.4% |
| pet       | 5     | 1         | 43    | 0        | 7       | 56    | 87.8% |
| wildlife  | 5     | 17        | 5     | 102      | 64      | 193   | 79.1% |
| Total     | 93    | 101       | 72    | 141      | 147     | 554   |       |

| Table  C-4: Lower M | Monocacy River. Actua      | l species categories  | versus predicted | categories, |
|---------------------|----------------------------|-----------------------|------------------|-------------|
| at 50% probability  | y cutoff, with rates of co | orrect classification | (RCC) for each c | ategory.    |

\*RCC = Actual number of predicted species category / Total number predicted. Example: 163 pet correctly predicted / 175 total number predicted for pet = 163/175 = 93%.

**Lower Monocacy River Water Samples.** Monthly monitoring from nine (9) monitoring stations on Lower Monocacy River was the source of water samples. The maximum number of *Enterococcus* isolates per water sample was 24, although the number of isolates that actually grew was sometimes fewer than 24. A total of 2,161 *Enterococcus* isolates were analyzed by statistical analysis. The BST results by species category, shown in Table C-5, indicates that 80% of the water isolates were assigned to a probable host source when using a 0.50 (60%) probability cutoff.



Figure C-2: Map of Lower Monocacy River Watershed. Red dots indicate water monitoring sites

| category, based on DOP-LMO-UMO combination library model with a 50% |        |             |                      |  |  |  |  |  |
|---------------------------------------------------------------------|--------|-------------|----------------------|--|--|--|--|--|
| threshold probability.                                              |        |             |                      |  |  |  |  |  |
|                                                                     |        | % assigned  | % assigned           |  |  |  |  |  |
|                                                                     |        | to category | to category          |  |  |  |  |  |
| Category                                                            | Number | 50% Prob.   | (excluding unknowns) |  |  |  |  |  |
| human                                                               | 340    | 15.7%       | 19.6%                |  |  |  |  |  |
| livestock                                                           | 522    | 24.2%       | 30.1%                |  |  |  |  |  |
| pet                                                                 | 502    | 23.2%       | 29.0%                |  |  |  |  |  |
| wildlife                                                            | 369    | 17.1%       | 21.3%                |  |  |  |  |  |
| unknown                                                             | 428    | 19.8%       |                      |  |  |  |  |  |
| Total                                                               | 2161   | 100.0%      | 100.0%               |  |  |  |  |  |
| % Classified                                                        | 80.2%  |             |                      |  |  |  |  |  |

Table C-5: Probable host source distribution of water isolates by species

The seasonal distribution of water isolates from samples collected at each sampling station is shown below in Table C-6.

|         |        | station. |      |        |       |  |  |  |  |  |
|---------|--------|----------|------|--------|-------|--|--|--|--|--|
|         | Season |          |      |        |       |  |  |  |  |  |
| Station | Spring | Summer   | Fall | Winter | Total |  |  |  |  |  |
| BEN0022 | 57     | 59       | 63   | 50     | 229   |  |  |  |  |  |
| BNG0005 | 68     | 72       | 65   | 45     | 250   |  |  |  |  |  |
| BSC0013 | 63     | 71       | 72   | 22     | 228   |  |  |  |  |  |
| CAR0001 | 63     | 72       | 63   | 72     | 270   |  |  |  |  |  |
| ISR0022 | 72     | 72       | 62   | 45     | 251   |  |  |  |  |  |
| LIN0005 | 63     | 72       | 67   | 16     | 218   |  |  |  |  |  |
| LIN0072 | 62     | 70       | 58   | 47     | 237   |  |  |  |  |  |
| MON0004 | 58     | 71       | 70   | 27     | 226   |  |  |  |  |  |
| MON0155 | 72     | 57       | 71   | 52     | 252   |  |  |  |  |  |
| Total   | 578    | 616      | 591  | 376    | 2161  |  |  |  |  |  |
|         |        |          |      |        |       |  |  |  |  |  |

Table C-6: Lower Monocacy River. Enterococcus isolates obtained from water collected during the spring, summer, fall, and winter seasons, by monitoring

Tables C-7 and C-8 (below) show the number and percent of the probable sources for each monitoring station by month.

| Dradiated Source   |                      |               |           |        |          |         |       |
|--------------------|----------------------|---------------|-----------|--------|----------|---------|-------|
| Station            | Date                 | Human         | Livestock | Pet    | Wildlife | Unknown | Total |
| BEN0022            | 11/17/03             | 0             | 3         | 0      | 13       | 0       | 16    |
| BEN0022            | 12/01/03             | 1             | 12        | 2      | 3        | 5       | 23    |
| BEN0022            | 01/06/04             | 2             | 12        | 6      | <u>л</u> | 5       | 23    |
| BEN0022            | 01/00/04<br>02/04/04 | 2<br>8        |           | 10     | + 2      | 2       | 21    |
| BEN0022            | 02/04/04             | 1             | 1         | 10     | 1        | 23      | 6     |
| BEN0022<br>BEN0022 | 04/06/04             | 3             | 2         | і<br>Д | 2        | 2       | 13    |
| BEN0022            | 05/11/04             | 1             | 2         | 3      | 6        | 9       | 22    |
| BEN0022            | 06/08/04             | 6             | 9         | 1      | 3        | 3       | 22    |
| BEN0022            | 07/07/04             | 1             | 5         | 6      | 5        | 18      | 35    |
| BEN0022            | 09/08/04             | 1<br>Q        | 5         | 0      | 6        | 10<br>4 | 24    |
| BEN0022            | 10/05/04             | 6             | 5<br>4    | 9      | 0<br>4   |         | 24    |
| BNG0005            | 11/17/03             | 1             | 0         | 4      | 4        | 11      | 24    |
| BNG0005            | 12/01/03             | 2             | 6         | 7      | т<br>б   | 0       | 20    |
| BNG0005            | 01/06/04             | $\frac{2}{3}$ | 3         | ,<br>Δ | 5        | 0<br>4  | 19    |
| BNG0005            | 02/04/04             | 1             | 5         | 8      | 5<br>7   | 1       | 22    |
| BNG0005            | 03/02/04             | 0             | 0         | 2      | 1        | 1       | 4     |
| BNG0005            | 04/06/04             | 3<br>3        | 5         | 0      | 5        | 7       | 20    |
| BNG0005            | 05/11/04             | 4             | 11        | 5      | 1        | 3       | 20    |
| BNG0005            | 06/08/04             | 6             | 8         | 2      | 2        | 6       | 24    |
| BNG0005            | 07/07/04             | 1             | 12        | 16     | 4        | 15      | 48    |
| BNG0005            | 09/08/04             | 4             | 13        | 0      | 6        | 1       | 24    |
| BNG0005            | 10/05/04             | 0             | 0         | 24     | Ő        | 0       | 24    |
| BSC0013            | 11/17/03             | 8             | 1         | 12     | 2        | 1       | 24    |
| BSC0013            | 12/01/03             | 5             | 4         | 5      | 2        | 8       | 24    |
| BSC0013            | 01/06/04             | 0             | 5         | 4      | 4        | 6       | 19    |
| BSC0013            | 03/02/04             | 0             | 0         | 1      | 0        | 2       | 3     |
| BSC0013            | 04/06/04             | 5             | 4         | 1      | 2        | 3       | 15    |
| BSC0013            | 05/11/04             | 7             | 7         | 0      | 2        | 8       | 24    |
| BSC0013            | 06/08/04             | 3             | 5         | 3      | 9        | 4       | 24    |
| BSC0013            | 07/07/04             | 3             | 19        | 6      | 7        | 12      | 47    |
| BSC0013            | 09/08/04             | 13            | 3         | 3      | 3        | 2       | 24    |
| BSC0013            | 10/05/04             | 5             | 5         | 11     | 1        | 2       | 24    |
| CAR0001            | 11/17/03             | 3             | 4         | 3      | 4        | 3       | 17    |
| CAR0001            | 12/01/03             | 4             | 8         | 6      | 4        | 1       | 23    |
| CAR0001            | 01/06/04             | 6             | 5         | 5      | 2        | 6       | 24    |
| CAR0001            | 02/04/04             | 10            | 1         | 12     | 0        | 1       | 24    |
| CAR0001            | 03/02/04             | 3             | 1         | 20     | 0        | 0       | 24    |
| CAR0001            | 04/06/04             | 5             | 6         | 1      | 0        | 3       | 15    |
| CAR0001            | 05/11/04             | 7             | 4         | 7      | 5        | 1       | 24    |
| CAR0001            | 06/08/04             | 3             | 5         | 1      | 11       | 4       | 24    |
| CAR0001            | 07/07/04             | 2             | 15        | 2      | 1        | 4       | 24    |

 Table C-7: Lower Monocacy River. BST Analysis: Number of Isolates per Station per Date.

|         |          |       | Predicted S | Source |          |         |       |
|---------|----------|-------|-------------|--------|----------|---------|-------|
| Station | Date     | Human | Livestock   | Pet    | Wildlife | Unknown | Total |
| CAR0001 | 08/10/04 | 1     | 1           | 2      | 8        | 12      | 24    |
| CAR0001 | 09/08/04 | 0     | 10          | 6      | 3        | 5       | 24    |
| CAR0001 | 10/05/04 | 3     | 2           | 4      | 4        | 10      | 23    |
| ISR0022 | 11/17/03 | 4     | 1           | 2      | 7        | 3       | 17    |
| ISR0022 | 12/01/03 | 3     | 1           | 10     | 2        | 6       | 22    |
| ISR0022 | 01/06/04 | 2     | 7           | 6      | 4        | 1       | 20    |
| ISR0022 | 02/04/04 | 6     | 3           | 10     | 2        | 1       | 22    |
| ISR0022 | 03/02/04 | 3     | 0           | 0      | 0        | 0       | 3     |
| ISR0022 | 04/06/04 | 0     | 5           | 16     | 2        | 1       | 24    |
| ISR0022 | 05/11/04 | 4     | 5           | 6      | 5        | 4       | 24    |
| ISR0022 | 06/08/04 | 6     | 9           | 2      | 4        | 3       | 24    |
| ISR0022 | 07/07/04 | 3     | 11          | 4      | 2        | 4       | 24    |
| ISR0022 | 08/10/04 | 1     | 12          | 7      | 0        | 4       | 24    |
| ISR0022 | 09/08/04 | 0     | 6           | 5      | 6        | 7       | 24    |
| ISR0022 | 10/05/04 | 0     | 5           | 11     | 6        | 1       | 23    |
| LIN0005 | 11/17/03 | 1     | 10          | 5      | 3        | 3       | 22    |
| LIN0005 | 12/01/03 | 9     | 2           | 10     | 0        | 0       | 21    |
| LIN0005 | 01/06/04 | 0     | 1           | 1      | 0        | 1       | 3     |
| LIN0005 | 02/04/04 | 4     | 5           | 0      | 3        | 1       | 13    |
| LIN0005 | 04/06/04 | 8     | 5           | 6      | 2        | 3       | 24    |
| LIN0005 | 05/11/04 | 3     | 2           | 0      | 3        | 7       | 15    |
| LIN0005 | 06/08/04 | 5     | 7           | 1      | 3        | 8       | 24    |
| LIN0005 | 07/07/04 | 3     | 10          | 8      | 12       | 15      | 48    |
| LIN0005 | 09/08/04 | 0     | 8           | 2      | 7        | 7       | 24    |
| LIN0005 | 10/05/04 | 1     | 4           | 15     | 3        | 1       | 24    |
| LIN0072 | 11/17/03 | 0     | 2           | 0      | 5        | 5       | 12    |
| LIN0072 | 12/01/03 | 3     | 5           | 8      | 5        | 1       | 22    |
| LIN0072 | 01/06/04 | 5     | 2           | 9      | 4        | 3       | 23    |
| LIN0072 | 02/04/04 | 4     | 3           | 16     | 0        | 1       | 24    |
| LIN0072 | 04/06/04 | 4     | 1           | 5      | 1        | 3       | 14    |
| LIN0072 | 05/11/04 | 5     | 12          | 3      | 2        | 2       | 24    |
| LIN0072 | 06/08/04 | 8     | 2           | 0      | 5        | 9       | 24    |
| LIN0072 | 07/07/04 | 1     | 12          | 0      | 6        | 3       | 22    |
| LIN0072 | 08/10/04 | 0     | 3           | 3      | 8        | 10      | 24    |
| LIN0072 | 09/08/04 | 3     | 8           | 4      | 1        | 8       | 24    |
| LIN0072 | 10/05/04 | 2     | 3           | 8      | 4        | 7       | 24    |
| MON0004 | 11/17/03 | 5     | 3           | 6      | 1        | 7       | 22    |
| MON0004 | 12/01/03 | 10    | 4           | 8      | 1        | 1       | 24    |
| MON0004 | 01/06/04 | 2     | 4           | 12     | 4        | 2       | 24    |
| MON0004 | 03/02/04 | 1     | 0           | 0      | 2        | 0       | 3     |
| MON0004 | 04/06/04 | 5     | 6           | 1      | 4        | 3       | 19    |

Lower Monocacy River TMDL Fecal Bacteria Document version: September 27, 2009

05/11/04

06/08/04

MON0004

MON0004

|         | Predicted Source |       |           |     |          |         |       |  |
|---------|------------------|-------|-----------|-----|----------|---------|-------|--|
| Station | Date             | Human | Livestock | Pet | Wildlife | Unknown | Total |  |
| MON0004 | 09/08/04         | 6     | 3         | 0   | 3        | 11      | 23    |  |
| MON0004 | 10/05/04         | 1     | 14        | 2   | 3        | 4       | 24    |  |
| MON0155 | 11/17/03         | 5     | 9         | 1   | 7        | 1       | 23    |  |
| MON0155 | 12/01/03         | 7     | 3         | 7   | 6        | 1       | 24    |  |
| MON0155 | 01/06/04         | 2     | 6         | 7   | 2        | 4       | 21    |  |
| MON0155 | 02/04/04         | 13    | 4         | 5   | 2        | 0       | 24    |  |
| MON0155 | 03/02/04         | 3     | 2         | 0   | 0        | 2       | 7     |  |
| MON0155 | 04/06/04         | 5     | 7         | 5   | 4        | 3       | 24    |  |
| MON0155 | 05/11/04         | 1     | 5         | 3   | 1        | 14      | 24    |  |
| MON0155 | 06/08/04         | 0     | 8         | 4   | 5        | 7       | 24    |  |
| MON0155 | 07/07/04         | 2     | 4         | 9   | 13       | 9       | 37    |  |
| MON0155 | 09/08/04         | 0     | 11        | 0   | 5        | 4       | 20    |  |
| MON0155 | 10/05/04         | 2     | 7         | 6   | 5        | 4       | 24    |  |

| Table C-8: | Lower Monocacy R | River. BST | Analysis: | Percentage of Sources per | Station per |
|------------|------------------|------------|-----------|---------------------------|-------------|
|            |                  |            | Date.     |                           |             |

|         |          |       | Predicted S | Source |          |         |       |
|---------|----------|-------|-------------|--------|----------|---------|-------|
| Station | Date     | Human | Livestock   | Pet    | Wildlife | Unknown | Total |
| BEN0022 | 11/17/03 | 0%    | 19%         | 0%     | 81%      | 0%      | 100%  |
| BEN0022 | 12/01/03 | 4%    | 52%         | 9%     | 13%      | 22%     | 100%  |
| BEN0022 | 01/06/04 | 10%   | 19%         | 29%    | 19%      | 24%     | 100%  |
| BEN0022 | 02/04/04 | 35%   | 4%          | 43%    | 9%       | 9%      | 100%  |
| BEN0022 | 03/02/04 | 17%   | 0%          | 17%    | 17%      | 50%     | 100%  |
| BEN0022 | 04/06/04 | 23%   | 15%         | 31%    | 15%      | 15%     | 100%  |
| BEN0022 | 05/11/04 | 5%    | 14%         | 14%    | 27%      | 41%     | 100%  |
| BEN0022 | 06/08/04 | 27%   | 41%         | 5%     | 14%      | 14%     | 100%  |
| BEN0022 | 07/07/04 | 3%    | 14%         | 17%    | 14%      | 51%     | 100%  |
| BEN0022 | 09/08/04 | 38%   | 21%         | 0%     | 25%      | 17%     | 100%  |
| BEN0022 | 10/05/04 | 25%   | 17%         | 38%    | 17%      | 4%      | 100%  |
| BNG0005 | 11/17/03 | 5%    | 0%          | 20%    | 20%      | 55%     | 100%  |
| BNG0005 | 12/01/03 | 10%   | 29%         | 33%    | 29%      | 0%      | 100%  |
| BNG0005 | 01/06/04 | 16%   | 16%         | 21%    | 26%      | 21%     | 100%  |
| BNG0005 | 02/04/04 | 5%    | 23%         | 36%    | 32%      | 5%      | 100%  |
| BNG0005 | 03/02/04 | 0%    | 0%          | 50%    | 25%      | 25%     | 100%  |
| BNG0005 | 04/06/04 | 15%   | 25%         | 0%     | 25%      | 35%     | 100%  |
| BNG0005 | 05/11/04 | 17%   | 46%         | 21%    | 4%       | 13%     | 100%  |
| BNG0005 | 06/08/04 | 25%   | 33%         | 8%     | 8%       | 25%     | 100%  |
| BNG0005 | 07/07/04 | 2%    | 25%         | 33%    | 8%       | 31%     | 100%  |
| BNG0005 | 09/08/04 | 17%   | 54%         | 0%     | 25%      | 4%      | 100%  |
| BNG0005 | 10/05/04 | 0%    | 0%          | 100%   | 0%       | 0%      | 100%  |
| BSC0013 | 11/17/03 | 33%   | 4%          | 50%    | 8%       | 4%      | 100%  |
| BSC0013 | 12/01/03 | 21%   | 17%         | 21%    | 8%       | 33%     | 100%  |

FINAL

| Predicted Source |          |       |           |     |          |         |       |
|------------------|----------|-------|-----------|-----|----------|---------|-------|
| Station          | Date     | Human | Livestock | Pet | Wildlife | Unknown | Total |
| BSC0013          | 01/06/04 | 0%    | 26%       | 21% | 21%      | 32%     | 100%  |
| BSC0013          | 03/02/04 | 0%    | 0%        | 33% | 0%       | 67%     | 100%  |
| BSC0013          | 04/06/04 | 33%   | 27%       | 7%  | 13%      | 20%     | 100%  |
| BSC0013          | 05/11/04 | 29%   | 29%       | 0%  | 8%       | 33%     | 100%  |
| BSC0013          | 06/08/04 | 13%   | 21%       | 13% | 38%      | 17%     | 100%  |
| BSC0013          | 07/07/04 | 6%    | 40%       | 13% | 15%      | 26%     | 100%  |
| BSC0013          | 09/08/04 | 54%   | 13%       | 13% | 13%      | 8%      | 100%  |
| BSC0013          | 10/05/04 | 21%   | 21%       | 46% | 4%       | 8%      | 100%  |
| CAR0001          | 11/17/03 | 18%   | 24%       | 18% | 24%      | 18%     | 100%  |
| CAR0001          | 12/01/03 | 17%   | 35%       | 26% | 17%      | 4%      | 100%  |
| CAR0001          | 01/06/04 | 25%   | 21%       | 21% | 8%       | 25%     | 100%  |
| CAR0001          | 02/04/04 | 42%   | 4%        | 50% | 0%       | 4%      | 100%  |
| CAR0001          | 03/02/04 | 13%   | 4%        | 83% | 0%       | 0%      | 100%  |
| CAR0001          | 04/06/04 | 33%   | 40%       | 7%  | 0%       | 20%     | 100%  |
| CAR0001          | 05/11/04 | 29%   | 17%       | 29% | 21%      | 4%      | 100%  |
| CAR0001          | 06/08/04 | 13%   | 21%       | 4%  | 46%      | 17%     | 100%  |
| CAR0001          | 07/07/04 | 8%    | 63%       | 8%  | 4%       | 17%     | 100%  |
| CAR0001          | 08/10/04 | 4%    | 4%        | 8%  | 33%      | 50%     | 100%  |
| CAR0001          | 09/08/04 | 0%    | 42%       | 25% | 13%      | 21%     | 100%  |
| CAR0001          | 10/05/04 | 13%   | 9%        | 17% | 17%      | 43%     | 100%  |
| ISR0022          | 11/17/03 | 24%   | 6%        | 12% | 41%      | 18%     | 100%  |
| ISR0022          | 12/01/03 | 14%   | 5%        | 45% | 9%       | 27%     | 100%  |
| ISR0022          | 01/06/04 | 10%   | 35%       | 30% | 20%      | 5%      | 100%  |
| ISR0022          | 02/04/04 | 27%   | 14%       | 45% | 9%       | 5%      | 100%  |
| ISR0022          | 03/02/04 | 100%  | 0%        | 0%  | 0%       | 0%      | 100%  |
| ISR0022          | 04/06/04 | 0%    | 21%       | 67% | 8%       | 4%      | 100%  |
| ISR0022          | 05/11/04 | 17%   | 21%       | 25% | 21%      | 17%     | 100%  |
| ISR0022          | 06/08/04 | 25%   | 38%       | 8%  | 17%      | 13%     | 100%  |
| ISR0022          | 07/07/04 | 13%   | 46%       | 17% | 8%       | 17%     | 100%  |
| ISR0022          | 08/10/04 | 4%    | 50%       | 29% | 0%       | 17%     | 100%  |
| ISR0022          | 09/08/04 | 0%    | 25%       | 21% | 25%      | 29%     | 100%  |
| ISR0022          | 10/05/04 | 0%    | 22%       | 48% | 26%      | 4%      | 100%  |
| LIN0005          | 11/17/03 | 5%    | 45%       | 23% | 14%      | 14%     | 100%  |
| LIN0005          | 12/01/03 | 43%   | 10%       | 48% | 0%       | 0%      | 100%  |
| LIN0005          | 01/06/04 | 0%    | 33%       | 33% | 0%       | 33%     | 100%  |
| LIN0005          | 02/04/04 | 31%   | 38%       | 0%  | 23%      | 8%      | 100%  |
| LIN0005          | 04/06/04 | 33%   | 21%       | 25% | 8%       | 13%     | 100%  |
| LIN0005          | 05/11/04 | 20%   | 13%       | 0%  | 20%      | 47%     | 100%  |
| LIN0005          | 06/08/04 | 21%   | 29%       | 4%  | 13%      | 33%     | 100%  |
| LIN0005          | 07/07/04 | 6%    | 21%       | 17% | 25%      | 31%     | 100%  |
| LIN0005          | 09/08/04 | 0%    | 33%       | 8%  | 29%      | 29%     | 100%  |
| LIN0005          | 10/05/04 | 4%    | 17%       | 63% | 13%      | 4%      | 100%  |
| LIN0072          | 11/17/03 | 0%    | 17%       | 0%  | 42%      | 42%     | 100%  |
| LIN0072          | 12/01/03 | 14%   | 23%       | 36% | 23%      | 5%      | 100%  |

| Predicted Source |          |       |           |     |          |         |       |
|------------------|----------|-------|-----------|-----|----------|---------|-------|
| Station          | Date     | Human | Livestock | Pet | Wildlife | Unknown | Total |
| LIN0072          | 01/06/04 | 22%   | 9%        | 39% | 17%      | 13%     | 100%  |
| LIN0072          | 02/04/04 | 17%   | 13%       | 67% | 0%       | 4%      | 100%  |
| LIN0072          | 04/06/04 | 29%   | 7%        | 36% | 7%       | 21%     | 100%  |
| LIN0072          | 05/11/04 | 21%   | 50%       | 13% | 8%       | 8%      | 100%  |
| LIN0072          | 06/08/04 | 33%   | 8%        | 0%  | 21%      | 38%     | 100%  |
| LIN0072          | 07/07/04 | 5%    | 55%       | 0%  | 27%      | 14%     | 100%  |
| LIN0072          | 08/10/04 | 0%    | 13%       | 13% | 33%      | 42%     | 100%  |
| LIN0072          | 09/08/04 | 13%   | 33%       | 17% | 4%       | 33%     | 100%  |
| LIN0072          | 10/05/04 | 8%    | 13%       | 33% | 17%      | 29%     | 100%  |
| MON0004          | 11/17/03 | 23%   | 14%       | 27% | 5%       | 32%     | 100%  |
| MON0004          | 12/01/03 | 42%   | 17%       | 33% | 4%       | 4%      | 100%  |
| MON0004          | 01/06/04 | 8%    | 17%       | 50% | 17%      | 8%      | 100%  |
| MON0004          | 03/02/04 | 33%   | 0%        | 0%  | 67%      | 0%      | 100%  |
| MON0004          | 04/06/04 | 26%   | 32%       | 5%  | 21%      | 16%     | 100%  |
| MON0004          | 05/11/04 | 20%   | 20%       | 27% | 13%      | 20%     | 100%  |
| MON0004          | 06/08/04 | 13%   | 29%       | 0%  | 29%      | 29%     | 100%  |
| MON0004          | 07/07/04 | 8%    | 29%       | 21% | 23%      | 19%     | 100%  |
| MON0004          | 09/08/04 | 26%   | 13%       | 0%  | 13%      | 48%     | 100%  |
| MON0004          | 10/05/04 | 4%    | 58%       | 8%  | 13%      | 17%     | 100%  |
| MON0155          | 11/17/03 | 22%   | 39%       | 4%  | 30%      | 4%      | 100%  |
| MON0155          | 12/01/03 | 29%   | 13%       | 29% | 25%      | 4%      | 100%  |
| MON0155          | 01/06/04 | 10%   | 29%       | 33% | 10%      | 19%     | 100%  |
| MON0155          | 02/04/04 | 54%   | 17%       | 21% | 8%       | 0%      | 100%  |
| MON0155          | 03/02/04 | 43%   | 29%       | 0%  | 0%       | 29%     | 100%  |
| MON0155          | 04/06/04 | 21%   | 29%       | 21% | 17%      | 13%     | 100%  |
| MON0155          | 05/11/04 | 4%    | 21%       | 13% | 4%       | 58%     | 100%  |
| MON0155          | 06/08/04 | 0%    | 33%       | 17% | 21%      | 29%     | 100%  |
| MON0155          | 07/07/04 | 5%    | 11%       | 24% | 35%      | 24%     | 100%  |
| MON0155          | 09/08/04 | 0%    | 55%       | 0%  | 25%      | 20%     | 100%  |
| MON0155          | 10/05/04 | 8%    | 29%       | 25% | 21%      | 17%     | 100%  |



# Figure C-3: Lower Monocacy River Watershed relative contribution by probable sources of *Enterococcus* contamination

#### Lower Monocacy River Summary

The use of ARA allowed the identification of probable bacterial sources in the Lower Monocacy River Watershed for source categories in the library. When water isolates were compared to the library and potential sources predicted, 80% of the isolates were classified by statistical analysis. The largest category of potential sources in the watershed as a whole was livestock (30%), pet (29%), followed by wildlife (21%), and human (20%).

C17

#### REFERENCES

Bell, J.B., Elliott, G.E. & Smith, D.W. 1983. Influence of Sewage Treatment and Urbanization on Selection of Multiple Resistance in Fecal Coliform Populations. *Appl. Environ. Microbiol.* 46, 227-32.

Department of Health and Human Services. Centers for Disease Control and Prevention. Pulsenet. 2006. "National Molecular Subtyping Network for Foodborne Disease Surveillance" <u>http://www.cdc.gov/pulsenet</u> [Available 01.26.06].

Hagedorn, C., Robinson, S.L., Filtz, J.R., Grubbs, S.M., Angier, T.A. & Beneau, R.B. 1999. Determining Sources of Fecal Pollution in a Rural Virginia Watershed with Antibiotic Resistance Patterns in Fecal Streptococci. *Appl. Environ. Microbiol.* 65, 5522-5531.

Krumperman, P.H. 1983. Multiple Antibiotic Resistance Indexing of *Escherichia coli* to Identify High-Risk Sources of Fecal Contamination of Foods. *Appl. Environ. Microbiol.* 46, 165-70.

Scott, T.M., Rose, J.B., Jenkins, T.M., Farrah, S.R. & Lukasik, J. 2002 Microbial Source Tracking: Current Methodology and Future Directions. *Appl. Environ. Microbiol.* 68(12), 3373-3385.

Simpson, J.M., Santo Domingo, J.W. & Reasoner, D.J. 2002 Microbial Source Tracking: State of the Science. *Environ. Sci. Technol.* 36(24), 5279-5288.

Wiggins, B.A. 1996. Discriminant Analysis of Antibiotic Resistance Patterns in Fecal Streptococci, a Method to Differentiate Human and Animal Sources of Fecal Pollution in Natural Waters. *Appl. Environ. Microbiol.* 62, 3997-4002.

Wiggins, B.A., Andrews, R.W., Conway, R.A., Corr, C.L., Dobratz, E. J., Dougherty, D.P., Eppard, J.R., Knupp, S.R., Limjoco, M.C., Mettenburg, J.M., Rinehardt, J.M., Sonsino, J., Torrijos, R.L. & Zimmerman, M.E. 1999. Use of Antibiotic Resistance Analysis to Identify Nonpoint Sources of Fecal Pollution. *Appl. Environ. Microbiol.* 65, 3483-3486.

#### ACKNOWLEDGEMENTS

We wish to thank the Richard A. Henson School of Science and Technology of Salisbury University, Salisbury, MD for its support. We also want to acknowledge Dr. Bertram Price and Joshua Greenberg of Price Associates, Inc., for their contributions to the statistical analysis in this project.
# Appendix D – Estimating Maximum Daily Loads

This appendix documents the technical approach used to define maximum daily loads of fecal bacteria consistent with the annual average TMDL which, when met, are protective of water quality standards in Lower Monocacy River. The approach builds upon the TMDL analysis that was conducted to ensure that compliance with the annual average target will result in compliance with the applicable water quality standards. The annual average loading target was converted into allowable *daily* values by using the loadings developed from the TMDL analysis. The approach is consistent with available EPA guidance on generating daily loads for TMDLs.

The available guidance for developing daily loads does not specify a single allowable approach; it contains a range of options. Selection of a specific method for translating a time-series of allowable loads into expression of a TMDL requires decisions regarding both the level of resolution (e.g., single daily load for all conditions vs. loads that vary with environmental conditions) and level of probability associated with the TMDL.

#### Level of Resolution

The level of resolution pertains to the amount of detail used in specifying the maximum daily load. The draft EPA guidance on daily loads provides three categories of options for level of resolution.

- 1. **Representative daily load:** In this option, a single daily load (or multiple representative daily loads) is specified that covers all time periods and environmental conditions.
- 2. **Flow-variable daily load:** This option allows the maximum daily load to vary based upon the observed flow condition.
- 3. **Temporally-variable daily load:** This option allows the maximum daily load to vary based upon seasons or times of varying source or water body behavior.

#### Probability Level

Essentially all TMDLs have some probability of being exceeded, with the specific probability being either explicitly specified or implicitly assumed. This level of probability reflects, directly or indirectly, two separate phenomena:

- 1. Water quality criteria consist of components describing acceptable magnitude, duration, and frequency. The frequency component addresses how often conditions can allowably surpass the combined magnitude and duration components.
- 2. Pollutant loads, especially from wet weather sources, typically exhibit a large degree of variability over time. It is rarely practical to specify a "never to be exceeded value" for a daily load, as essentially any loading value has some finite probability of being exceeded.

The draft daily load guidance states that the probability component of the maximum daily load should be "based on a representative statistical measure" that is dependent upon the specific TMDL and best professional judgment of the developers. This statistical measure represents how

often the maximum daily load is expected/allowed to be exceeded. The primary options for selecting this level of protection would be:

- 1. **The maximum daily load reflects some central tendency:** In this option, the maximum daily load is based upon the mean or median value of the range of loads expected to occur. The variability in the actual loads is not addressed.
- 2. The maximum daily load reflects a level of protection implicitly provided by the selection of some "critical" period: In this option, the maximum daily load is based upon the allowable load that is predicted to occur during some critical period examined during the analysis. The developer does not explicitly specify the probability of occurrence.
- 3. The maximum daily load is a value that will be exceeded with a pre-defined probability: In this option, a "reasonable" upper bound percentile is selected for the maximum daily load based upon a characterization of the variability of daily loads. For example, selection of the 95<sup>th</sup> percentile value would result in a maximum daily load that would be exceeded 5% of the time.

# Selected Approach for Defining Maximum Daily Loads for Nonpoint Sources and MS4

To calculate the Lower Monocacy River MDL for nonpoint sources and MS4, a "representative daily load" option was selected as the level of resolution, and a value "that will be exceeded with a pre-defined probability" was selected as the level of protection. In these options, the maximum daily load is one single daily load that covers to the two flow strata, with an upper bound percentile that accounts for the variability of daily loads. The upper bound percentile and the maximum daily loads were estimated following EPA's "*Technical Support Document for Water Quality-Based Toxics Control*" (1991 TSD) (EPA 1991); and "*Approaches For Developing a Daily Load Expression for TMDLs Computed for Longer Term Averages*" (EPA 2006).

The 1991 TSD illustrates a way to identify a target maximum daily concentration from a longterm average concentration (LTA) based on a coefficient of variation (CV) and the assumption of a log-normal distribution of the data. The equations for determining both the upper boundary percentile and corresponding maximum daily load described in the TSD are as follows:

 $MDLC = LTA * e^{[Z\sigma - 0.5\sigma^2]}$ (D1)

and MDL = MDLC\*Q\*F (D2)

where

MDLC = Maximum daily load concentration (MPN/100ml)

LTAC = Long-term average TMDL concentration (MPN/100ml)

MDL = Maximum Daily Load (MPN/day)

Z = z-score associated with upper bound percentile (unitless)

$$\sigma^2 = \ln(CV^2 + 1)$$

CV = Coefficient of variation

Q = Flow (cfs)

F = conversion factor

The first step is to use the bacteria monitoring data to estimate the upper bound percentile as the percentile of the highest observed bacteria concentration in each of the three monitoring stations of Lower Monocacy River. Using the maximum value of *E. coli* observed in each monitoring station, and solving for the z-score using the above formula, the value of "z" and its corresponding percentile is found as shown below. The percentile associated with the particular value of z can be found in tables in statistics books or using the function NORMSINV(%) in EXCEL<sup>®</sup>.

 $Z = [log_{10}(MOC) - log(AM) + 0.5\sigma^{2}]/\sigma$ 

Where

Z = z-score associated with upper bound percentile

MOC = Maximum observed bacteria concentration (MPN/100ml)

AM = Arithmetic mean observed bacteria concentrations (MPN/100ml)

 $\sigma^2 = \ln(CV^2 + 1)$ 

CV = Coefficient of variation (arithmetic)

Note that these equations use arithmetic parameters, not geometric parameters as used in the calculations of the long-term annual average TMDL. Therefore, bias correction factors are not necessary to estimate the loads as will be explained below.

The highest percentile of all the stations analyzed by stratum will define the upper bound percentile to be used in estimating the maximum daily limits. In the case of Lower Monocacy River, a value measured during low-flow conditions at the BNG0005 station resulted in the highest percentile of all nine stations and strata. This value translates to the 96.5<sup>th</sup> percentile, which is the upper boundary percentile to be used in the computation of the maximum daily limits (MDLs) throughout this analysis. Results of the analysis to estimate the recurrence or upper boundary percentile are shown in Table D-1.

| Station    | Strata    | Maximum Observed<br><i>E. coli</i> Concentration<br>(MPN/100ml) | Percentile |  |  |  |
|------------|-----------|-----------------------------------------------------------------|------------|--|--|--|
| DEN10022   | High Flow | 1400                                                            | 94.02%     |  |  |  |
| DEIN0022   | Low Flow  | 700                                                             | 92.71%     |  |  |  |
| PNC0005    | High Flow | 1190                                                            | 91.75%     |  |  |  |
| DINGUUUS   | Low Flow  | 1240                                                            | 96.50%     |  |  |  |
| DSC0012    | High Flow | 2140                                                            | 83.39%     |  |  |  |
| BSC0015    | Low Flow  | 930                                                             | 94.38%     |  |  |  |
| C + D 0001 | High Flow | 1720                                                            | 94.44%     |  |  |  |
| CARUUUI    | Low Flow  | 5170                                                            | 91.78%     |  |  |  |
| 1500022    | High Flow | 2280                                                            | 95.52%     |  |  |  |
| 15K0022    | Low Flow  | 11200                                                           | 88.13%     |  |  |  |
| L IN10005  | High Flow | 5170                                                            | 92.10%     |  |  |  |
| LINUUUS    | Low Flow  | 840                                                             | 94.14%     |  |  |  |
| L D10072   | High Flow | 3260                                                            | 93.48%     |  |  |  |
| LINUU72    | Low Flow  | 2040                                                            | 85.65%     |  |  |  |
|            | High Flow | 1580                                                            | 86.24%     |  |  |  |
| MON0004    | Low Flow  | 880                                                             | 93.97%     |  |  |  |
| MON0155    | High Flow | 1380                                                            | 84.80%     |  |  |  |
| MON0155    | Low Flow  | 830                                                             | 92.04%     |  |  |  |

# Table D-1: Percentiles of Maximum Observed Bacteria Concentrations in the Lower Monocacy River Subwatersheds

As seen in Table D-1, the highest percentile value obtained from all nine stations and strata is 96.5%, therefore, the upper boundary percentile to be used to estimate MDLs in this analysis will equal 96.5%. This 96.5<sup>th</sup> percentile value results in a maximum daily load that would not be exceeded 96.5% of the time, as, in a similar manner, a TMDL that represents the long term

average condition would be expected to be exceeded half the time even after all required controls were implemented.

The MDLCs are estimated based on a statistical methodology referred to as "Statistical Theory of Rollback (STR)". This method predicts concentrations of a pollutant after its sources have been controlled (post-control concentrations), in this case after annual average TMDL implementation. Using STR, the daily TMDLs are calculated as presented below.

First, the long-term average TMDL concentrations ( $C_{LTA}$ ) by stratum are estimated by applying the required percent reduction to the baseline (monitoring data) concentrations ( $C_b$ ) by stratum as follows:

From Section 4.3, equations (8) and (9):

 $L_{b} = L_{b-H} + L_{b-L}$   $L_{b} = Q_{H} * C_{bH} * F_{1H} * W_{H} + Q_{L} * C_{bL} * F_{1L} * W_{L}$ And from equation (10)  $Annual Average TMDL = L_{b} * (1 - R)$ 

Therefore,  $L_b^*(1-R) = Q_H^*C_H^*F_{1H}^*W_H^*(1-R) + Q_L^*C_L^*F_{1L}^*W_L^*(1-R)$ 

As explained before, a reduction in concentration is proportional to a reduction in load, thus the bacteria concentrations expected after reductions are applied are equal to the baseline concentrations multiplied by one minus the required reduction:

$$C_{LTA-H} = C_{b-H} * (1-R_H)$$
$$C_{LTA-L} = C_{b-L} * (1-R_L)$$

The TMDL concentrations estimated as explained above are shown in Table D-2.

| Station     | Strata    | LTA Geometric<br>Mean<br>Concentrations<br>(MPN/100ml) | LTA Arithmetic<br>Mean*<br>Concentrations<br>(MPN/100ml) |
|-------------|-----------|--------------------------------------------------------|----------------------------------------------------------|
| DEN10022    | High Flow | 83                                                     | 177                                                      |
| DEIN0022    | Low Flow  | 60                                                     | 106                                                      |
| DNC0005     | High Flow | 75                                                     | 134                                                      |
| DINGUUUS    | Low Flow  | 67                                                     | 102                                                      |
| DSC0012     | High Flow | 121                                                    | 264                                                      |
| BSC0015     | Low Flow  | 46                                                     | 66                                                       |
| G A D A A A | High Flow | 63                                                     | 73                                                       |
| CAR0001     | Low Flow  | 84                                                     | 171                                                      |
| 1500022     | High Flow | 19                                                     | 30                                                       |
| 15K0022     | Low Flow  | 52                                                     | 297                                                      |
| L INIQO05   | High Flow | 167                                                    | 2,609                                                    |
| LINUUUS     | Low Flow  | 89                                                     | 223                                                      |
| L INI0072   | High Flow | 92                                                     | 137                                                      |
| LINUU/2     | Low Flow  | 64                                                     | 127                                                      |
|             | High Flow | 160                                                    | 471                                                      |
|             | Low Flow  | 55                                                     | 136                                                      |
|             | High Flow | 136                                                    | 299                                                      |
| MON0155     | Low Flow  | 52                                                     | 112                                                      |

## Table D-2: Long-term Annual Average (LTA) TMDL Bacteria Concentrations

\*Only arithmetic parameters are used in the daily loads analysis.

The next step is to calculate the 96.5<sup>th</sup> percentile (the MDL concentrations) of these expected concentrations (LTA concentrations) using the coefficient of variation of the baseline concentrations. Based on a general rule for coefficient of variations, the coefficient of variation of the distribution of the concentrations of a pollutant does not change after these concentrations have been reduced or controlled by a fixed proportion (Ott 1995).

Therefore, the coefficient of variation estimated using the monitoring data concentrations does not change, and it can be used to estimate the 96.5<sup>th</sup> percentile of the long-term average TMDL concentrations (LTAC) using equation (D1). These values are shown in Table D-3.

| Station      | Stratum   | CV   | MDL<br>Concentrations<br>(MPN/100ml) |
|--------------|-----------|------|--------------------------------------|
| DEN10022     | High Flow | 1.9  | 770                                  |
| DEIN0022     | Low Flow  | 1.4  | 410                                  |
| DNC0005      | High Flow | 1.5  | 532                                  |
| BINGUUUS     | Low Flow  | 1.1  | 350                                  |
| DSC0012      | High Flow | 1.9  | 1,158                                |
| BSC0013      | Low Flow  | 1.0  | 213                                  |
| CAD0001      | High Flow | 0.6  | 165                                  |
| CAR0001      | Low Flow  | 1.8  | 729                                  |
| 1500000      | High Flow | 1.2  | 107                                  |
| 15K0022      | Low Flow  | 5.6  | 1,531                                |
| LINI0005 aut | High Flow | 15.6 | 11,172                               |
| LINUUUSSUD   | Low Flow  | 2.3  | 1,118                                |
| L INIO072    | High Flow | 1.1  | 463                                  |
| LINUU72      | Low Flow  | 1.7  | 531                                  |
| MON100041-   | High Flow | 2.8  | 2,350                                |
| MOIN0004SUD  | Low Flow  | 2.2  | 712                                  |
| MON01551     | High Flow | 2.0  | 1,176                                |
|              | Low Flow  | 1.9  | 874                                  |

Table D-3: Maximum Daily Load (MDL) Concentrations

With the 96.5<sup>th</sup> percentiles of LTA TMDL bacteria concentrations estimated for both high flow and low flow strata as explained above, the maximum daily load for MS4 and nonpoint sources for each subwatershed can be now estimated as:

Daily TMDL (MPN/day) = 
$$Q_H^*(96.5^{th}C_{LTA-H})*F_{1H}*W_H + Q_L^*(96.5^{th}C_{LTA-L})*F_{1L}*W_L$$

# Selected Approach for Defining Maximum Daily Loads for Other Point Sources

The TMDL also considers contributions from other point sources (i.e., municipal and industrial WWTP) in watersheds that have NPDES permits with fecal bacteria limits. The TMDL analysis that defined the average annual TMDL held each of these sources constant at their existing NPDES permit limit (daily or monthly) for the entire year. The approach used to determine maximum daily loads was dependent upon whether a maximum daily load was specified within the permit. If a maximum daily load was specified within the permit. If a maximum daily load was specified within the permit. If a maximum daily load was specified within the permit, then the maximum design flow is multiplied by the maximum daily limit to obtain a maximum daily load. If a maximum daily limit was not specified in the permit, then the maximum daily loads are calculated from guidance in the TSD for Water Quality-based Toxics Control (EPA 1991). The long-term average annual TMDL was converted to maximum daily limits using Table 5-2 of the TSD assuming a coefficient of variation of 0.6 and a 99<sup>th</sup> percentile probability. This results in a dimensionless multiplication factor of 3.11. The average annual bacteria loads for WWTPs are reported in billion MPN/year. In Lower Monocacy River, to estimate the maximum daily loads for WWTPs, the annual average loads are multiplied by the multiplication factor as follows:

WLA-WWTP MDL (bill MPN/day) = [WLA-WWTP bill MPN/year)]\*(3.11/365)

The Maximum Daily Loads for the Lower Monocacy River subwatersheds are presented in Table D-4 below.

| Station      | Stratum      | Maximum Daily<br>Load by Stratum<br>(Billion <i>E. coli</i><br>MPN/day) | Maximum Daily<br>Load (Weighted)<br>(Billion <i>E. coli</i><br>MPN/day) |  |  |
|--------------|--------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|--|--|
| DEN0022      | High Flow    | 3,590                                                                   | 1 162                                                                   |  |  |
| BEIN0022     | Low Flow     | 354                                                                     | 1,105                                                                   |  |  |
| PNG0005      | High Flow    | 904                                                                     | 205                                                                     |  |  |
| BING0003     | Low Flow     | 92                                                                      | 293                                                                     |  |  |
| DSC0012      | High Flow    | 2,947                                                                   | 800                                                                     |  |  |
| BSC0015      | Low Flow     | 84                                                                      | 800                                                                     |  |  |
| CAD0001      | High Flow    | 239                                                                     | 192                                                                     |  |  |
| CAR0001      | Low Flow     | 164                                                                     | 182                                                                     |  |  |
| ISD0022      | High Flow    | 265                                                                     | 505                                                                     |  |  |
| 15K0022      | Low Flow     | 585                                                                     | 505                                                                     |  |  |
| I DI0005 aut | High Flow    | 26,688                                                                  | 6 0 8 2                                                                 |  |  |
| LINOUUSSUU   | Low Flow     | 414                                                                     | 0,982                                                                   |  |  |
| L IN10072    | High Flow    | 2,402                                                                   | 021                                                                     |  |  |
| LIN0072      | Low Flow     | 427                                                                     | 921                                                                     |  |  |
| MONO04auh    | High Flow    | 7,609                                                                   | 2 170                                                                   |  |  |
| MONU004SUD   | Low Flow 357 |                                                                         | 2,170                                                                   |  |  |
| MON01551     | High Flow    | 3,420                                                                   | 1.020                                                                   |  |  |
| MONUISSED    | Low Flow     | 232                                                                     | 1,029                                                                   |  |  |

Table D-4: Maximum Daily Loads (MDL)

## Maximum Daily Loads Allocations

Using the MDLs estimated as explained above, loads are allocated following the same methodology as the annual average TMDL (See section 4.8). A summary of maximum daily loads for the Lower Monocacy River watershed is presented in Table D-5.

| Station    | MDL                             | LA    | Stormwater<br>WLA | WWTP-WLA |  |  |  |  |  |  |
|------------|---------------------------------|-------|-------------------|----------|--|--|--|--|--|--|
|            | Billion MPN <i>E. Coli</i> /day |       |                   |          |  |  |  |  |  |  |
| BEN0022    | 1,163                           | 888   | 273               | 1.85     |  |  |  |  |  |  |
| BNG0005    | 295                             | 207   | 88                | 0.40     |  |  |  |  |  |  |
| BSC0013    | 800                             | 588   | 204               | 8.46     |  |  |  |  |  |  |
| CAR0001    | 182                             | 93    | 89                | 0.18     |  |  |  |  |  |  |
| ISR0022    | 505                             | 360   | 144               | 1.48     |  |  |  |  |  |  |
| LIN0005sub | 6,982                           | 3,958 | 3,024             | N/A      |  |  |  |  |  |  |
| LIN0072    | 921                             | 771   | 149               | 0.74     |  |  |  |  |  |  |
| MON0004sub | 2,170                           | 1,206 | 637               | 327.01   |  |  |  |  |  |  |
| MON0155sub | 1,029                           | 401   | 480               | 148.34   |  |  |  |  |  |  |
| Total      | 14,048                          | 8,471 | 5,088             | 488      |  |  |  |  |  |  |

 Table D-5:
 Lower Monocacy River Watershed Maximum Daily Loads

## REFERENCES

Limno-Tech, Inc. 2007. Draft Memorandum: Technical Approach for Four Alternative Options to Define Maximum Daily Loads for the Anacostia TMDL. Washington, DC. January 23, 2007.

EPA (U.S. Environmental Protection Agency). 2006. Approaches For Developing a Daily Load Expression for TMDLs Computed for Longer Term Averages. Draft guidance document. Washington, DC. October 2006.

EPA (U.S. Environmental Protection Agency). 1991. Technical Support Document for Water Quality-Based Toxics Control (1991 TSD). Washington, DC.

Ott, Wayne R. Environmental Statistics and Data Analysis. 1995. CRC Press. Pages 276 - 283.

#### Appendix E – Relationship of Fecal Bacteria TMDLs for the Double Pipe Creek, Upper Monocacy River, and Lower Monocacy River Watersheds

The purpose of this appendix is to explain the hydrologic relationship between the Double Pipe Creek, Upper Monocacy River, and Lower Monocacy River watersheds and how this affects the fecal bacteria TMDLs for each of the respective watersheds. As illustrated in Figure E-1, the three watersheds are hydrologically connected, beginning with the Double Pipe Creek watershed to the east. The Double Pipe Creek watershed flows into the Upper Monocacy River watershed, near the small town of Rocky Ridge. It is also shown in Figure E-1 that the Upper Monocacy River watershed includes land in Pennsylvania and Maryland. The combined flow from the Upper Monocacy River watershed and the Double Pipe Creek watershed flows into the Lower Monocacy River watershed. The hydrologic connectivity of the watersheds is illustrated in Figure E-2.

The baseline fecal bacteria loads for the watersheds are shown in Table E-1. The TMDL calculations are shown in Tables E-2 through E-4. Further information can be found in the individual TMDL documents for each watershed.



Figure E-1: Location of the Double Pipe Creek, Upper Monocacy River, and Lower Monocacy River Watersheds



Figure E-2: Flow Schematic of the Double Pipe Creek, Upper Monocacy River, and Lower Monocacy River Watersheds

| Watershed               | Total Baseline Load              | Ш  | MD 8-digit Basin<br>Load | + | Upstream<br>Load        |  |  |  |  |
|-------------------------|----------------------------------|----|--------------------------|---|-------------------------|--|--|--|--|
|                         | Billion MPN <i>E. coli</i> /year |    |                          |   |                         |  |  |  |  |
| Double Pipe Creek       | 11,614,269                       | II | 11,614,269               | + | N/A                     |  |  |  |  |
| Upper Monocacy<br>River | 15,073,485                       | =  | 1,985,054                | + | 13,088,431 <sup>1</sup> |  |  |  |  |
| Lower Monocacy<br>River | 20,856,810                       | =  | 5,783,325                | + | 15,073,485 <sup>2</sup> |  |  |  |  |

**Table E-1: Fecal Bacteria Baseline Loads** 

<sup>1</sup>The upstream load is equivalent to the Double Pipe Creek baseline load (11,614,269 billion MPN *E. coli*/year) plus the PA baseline load (1,474,162 billion MPN *E. coli*/year).

<sup>2</sup>The upstream load is equivalent to the Upper Monocacy River baseline load.

| TMDL<br>Billion MPN <i>E.</i><br><i>coli</i> /year | = | _ MD LA                  |   | + Stormwater<br>WI A |   | + WWTP<br>WI A |   | MOS          |  |  |
|----------------------------------------------------|---|--------------------------|---|----------------------|---|----------------|---|--------------|--|--|
|                                                    |   |                          |   |                      |   |                |   |              |  |  |
|                                                    |   | Billion MPN E. coli/year |   |                      |   |                |   |              |  |  |
| 282,168                                            | = | 181,528                  | + | 91,249               | + | 9,391          | + | Incorporated |  |  |

#### Table E-2: Double Pipe Creek TMDL

#### Table E-3: Upper Monocacy River TMDL Summary

| TMDL<br>Billion MPN | = | LA <sub>UM</sub> | + | WLA <sub>UM</sub> | +   | LA <sub>DP</sub>     | +     | LA <sub>PA</sub>     | + | MOS          |
|---------------------|---|------------------|---|-------------------|-----|----------------------|-------|----------------------|---|--------------|
| E. Couryear         |   |                  |   |                   | Bil | lion MPN E.          | . col | li/year              |   |              |
| 1,353,850           | = | 483,751          | + | 57,483            | +   | 282,168 <sup>1</sup> | +     | 575,448 <sup>2</sup> | + | Incorporated |

<sup>1</sup>This upstream load allocation is equivalent to the Double Pipe Creek TMDL.

<sup>2</sup> This upstream PA load allocation is determined to be necessary in order to meet MD water quality standards in the MD portion of the Upper Monocacy River watershed.

| T٤ | able E-4: | Lower | <sup>•</sup> Monocacy | River | TMDL | Summary |  |
|----|-----------|-------|-----------------------|-------|------|---------|--|
|    |           |       |                       |       |      |         |  |

| TMDL<br>Billion MPN | = | $LA_{LM}$ | +  | WLA <sub>LM</sub> | +    | LA <sub>UM</sub>       | + | MOS          |
|---------------------|---|-----------|----|-------------------|------|------------------------|---|--------------|
| E. Couryear         |   |           |    | <b>Billion M</b>  | PN . | <i>E. coli</i> /year   |   |              |
| 2,033,379           | = | 426,161   | +  | 253,368           | +    | 1,353,850 <sup>1</sup> | + | Incorporated |
| 1001                | 1 | 1         | .1 | TI 14 F           | 、 ·  | THE O                  |   |              |

The upstream load is equivalent to the Upper Monocacy River TMDL Summary.