PHASE II INVESTIGATION REPORT

AREA B: PARCEL B24 TRADEPOINT ATLANTIC SPARROWS POINT, MARYLAND

Prepared For:

TRADEPOINT ATLANTIC 1600 Sparrows Point Boulevard Sparrows Point, Maryland 21219

Prepared By:

ARM GROUP LLC

9175 Guilford Road Suite 310 Columbia, Maryland 21046

ARM Project No. 20010224

Respectfully Submitted,

prin Barni

Joshua M. Barna, G.I.T. Staff Geologist

Al. Pets

T. Neil Peters, P.E. Senior Vice President

Revision 0 – September 25, 2020

TABLE OF CONTENTS

1.0 INTR	ODUCTION	1
1.1. Site	e History	1
1.2. Ob	jectives	2
2.0 ENV	RONMENTAL SETTING	3
2.1. Lar	nd Use and Surface Features	3
2.2. Reg	gional Geology	3
2.3. Site	e Geology/Hydrogeology	4
3.0 SITE	INVESTIGATION	5
3.1. Sar	nple Target Identification	5
3.2. Soi	l Investigation	6
3.3. Gro	oundwater Investigation	8
3.4. Ma	nagement of Investigation-Derived Waste (IDW)	9
4.0 ANA	LYTICAL RESULTS 1	. 1
4.1. Soi	l Conditions 1	. 1
4.1.1.	Soil Conditions: Organic Compounds 1	. 1
4.1.2.	Soil Conditions: Inorganic Constituents 1	.2
4.1.3.	Soil Conditions: Results Summary 1	.2
4.2. Gro	bundwater Conditions 1	.3
4.2.1.	Groundwater Conditions: Organic Compounds1	.3
4.2.2.	Groundwater Conditions: Inorganic Constituents 1	.4
4.2.3.	Groundwater Conditions: Results Summary 1	.4
4.3. Su	nmary of NAPL Observations 1	.5
5.0 DAT.	A USABILITY ASSESSMENT 1	7
5.1. Dat	a Verification	.8
5.2. Dat	a Validation	.8
5.3. Dat	a Usability1	.9
6.0 FIND	INGS AND RECOMMENDATIONS	22
6.1. Soi	1	22
6.2. Gro	pundwater2	23
6.3. NA	PL	24
6.4. Rec	commendations	24
7.0 REFE	PRENCES	26

TABLE OF CONTENTS (CONT.)

FIGURES

Figure 1	Area A and Area B Parcels	Following Text
Figure 2	Approximate Shoreline 1916	.Following Text
Figure 3	Groundwater Sample Locations & Elevation Contours	.Following Text
Figure 4	Soil Sample Locations	.Following Text
Figure S1	Soil SVOC PAL Exceedances	.Following Text
Figure S2	Soil Oil & Grease PAL Exceedances	.Following Text
Figure S3	Soil Inorganic PAL Exceedances	.Following Text
Figure GW1	Groundwater VOC PAL Exceedances	.Following Text
Figure GW2	Groundwater SVOC PAL Exceedances	.Following Text
Figure GW3	Groundwater TPH/Oil & Grease PAL Exceedances	.Following Text
Figure GW4	Groundwater Inorganic PAL Exceedances	.Following Text

TABLES

Table 1	Groundwater Elevation Data	Following T	'ext
Table 2	Historical Site Drawing Details	Following T	`ext
Table 3	Field Shifted Boring Locations	Following T	`ext
Table 4	Characterization Results for Solid IDW	Following T	`ext
Table 5	Characterization Results for Liquid IDW	Following T	`ext
Table 6	Summary of Organics Detected in Soil	Following T	`ext
Table 7	Summary of Inorganics Detected in Soil	Following T	`ext
Table 8	Summary of Soil PAL Exceedances	Following T	`ext
Table 9	Soil PAL Exceedances for Specific Targets	Following T	`ext
Table 10	Summary of Organics Detected in Groundwater	Following T	`ext
Table 11	Summary of Inorganics Detected in Groundwater	Following T	`ext
Table 12	Cumulative Vapor Intrusion Criteria Comparison	Following T	`ext
Table 13	Rejected Analytical Soil Results	Following T	`ext

TABLE OF CONTENTS (CONT.)

APPENDICES

Appendix A	Final Sampling Plan Summary	.Following Text
Appendix B	Soil Boring and Piezometer Construction Logs	.Following Text
Appendix C	Groundwater Survey Data	.Following Text
Appendix D	PID Calibration Log	.Following Text
Appendix E	Groundwater Purge & Multiparameter Meter Calibration Logs	.Following Text
Appendix F	Parcel-Specific IDW Drum Log	.Following Text
Appendix G	QA/QC Tracking Log	.Following Text
Appendix H	Evaluation of Data Completeness	.Following Text
Appendix I	Piezometer Abandonment Forms	.Following Text

ELECTRONIC ATTACHMENTS

Soil Laboratory Certificates of Analysis	Electronic Attachment
Soil Data Validation Reports	Electronic Attachment
Groundwater Laboratory Certificates of Analysis	Electronic Attachment
Groundwater Data Validation Reports	Electronic Attachment
Parcel B24 NAPL Completion Report	Electronic Attachment

1.0 INTRODUCTION

ARM Group LLC (ARM), on behalf of Tradepoint Atlantic, has completed a Phase II Investigation of a portion of the Tradepoint Atlantic property (formerly Sparrows Point Terminal, LLC) that has been designated as Area B: Parcel B24 (the Site). Parcel B24 is comprised of 25.7 acres of the approximately 3,100-acre former steel making facility (**Figure 1**). The Site is bounded to the north by Parcel B8 (containing the former Billet Building), to the northeast by the Humphrey Impoundment (Parcel B14), to the east by the Tin Mill Canal (TMC; Parcel B16) and the Atlantic Forest Products facility (Parcel B15), to the south by rail lines (within Parcel B23 and Parcel B1), and to the west by Bear Creek beyond Riverside Drive.

The Phase II Investigation was performed in accordance with procedures outlined in the approved Phase II Investigation Work Plan for Area B: Parcel B24. The Work Plan (Revision 1 dated December 27, 2019) was approved by the Maryland Department of the Environment (MDE) and the United States Environmental Protection Agency (USEPA) on February 4, 2020. Although not included in the original Work Plan, in response to a request from the Chesapeake Bay Foundation (CBF) and Blue Water Baltimore (BWB), existing monitoring wells TM02-PZM009 and TM03-PZM004 (which are not located on Parcel B24) were sampled as part of this Phase II Investigation and the results are presented herein.

The Work Plan was implemented in compliance with requirements pursuant to the following:

- Administrative Consent Order (ACO) between Tradepoint Atlantic (formerly Sparrows Point Terminal, LLC) and the MDE effective September 12, 2014; and
- Settlement Agreement and Covenant Not to Sue (SA) between Tradepoint Atlantic (formerly Sparrows Point Terminal, LLC) and the USEPA effective November 25, 2014.

An application to enter the full Tradepoint Atlantic property (3,100 acres) into the Maryland Department of the Environment Voluntary Cleanup Program (MDE-VCP) was submitted to the MDE and delivered on June 27, 2014. The property's current and anticipated future use is Tier 3 (Industrial), and plans for the property include demolition and redevelopment over the next several years. Parcel B24 is also part of the acreage that remains subject to the requirements of the Multimedia Consent Decree between Bethlehem Steel Corporation, the USEPA, and the MDE (effective October 8, 1997) as documented in correspondence received from the USEPA on September 12, 2014.

1.1. SITE HISTORY

From the late 1800s until 2012, the production and manufacturing of steel was conducted at Sparrows Point. Iron and steel production operations and processes at Sparrows Point included raw material handling, coke production, sinter production, iron production, steel production, and semi-finished and finished product preparation. In 1970, Sparrows Point was the largest steel

facility in the United States, producing hot and cold rolled sheets, coated materials, pipes, plates, and rod and wire. The steel making operations at Sparrows Point ceased in fall 2012.

Parcel B24 contains the Humphrey Creek Wastewater Treatment Plant (HCWWTP). The HCWWTP handles influent from the TMC, which historically received stormwater and wastewater from various steel production activities on the Tradepoint Atlantic property. Since the cessation of steel operations, the HCWWTP continues to treat stormwater collected in the TMC. The HCWWTP discharges treated effluent into the adjacent water body of Bear Creek to the west. The HCWWTP uses various treatment processes to treat the TMC influent, including but not limited to settling basins, thickeners, aerators, and chemical addition (lime, caustic, flocculation, and acid washing). Two existing settling basins (one of which has been partially backfilled) and upstream aeration systems are currently utilized in the ongoing wastewater treatment operations. Two thickener tanks located to the south of the treatment plant building allow for sludge removal. The residual sludge is then handled through filter press devices. Dried sludge filter cake is taken to the on-site non-hazardous Greys Landfill in roll-off containers. An emergency detention basin is located to the north of the HCWWTP. The 2.5-acre emergency detention basin was constructed in 2002 as a bypass system to be used in the event of any treatment upsets.

Based on the historical use of the HCWWTP, it is possible that some operations performed at the HCWWTP may have impacted the surrounding soil and groundwater. A detailed discussion of the Recognized Environmental Conditions (RECs) and other features of potential concern associated with the HCWWTP, as defined by Weaver Boos Consultants, can be found in the Parcel B24 Work Plan. There is no evidence that significant iron and steel industrial processes were completed within the boundary of Parcel B24.

1.2. OBJECTIVES

The objective of this Phase II Investigation was to characterize the nature and extent of contamination at the Site. A summary table of the site investigation locations, including the boring identification numbers and the analyses performed, is provided as **Appendix A**. This report includes a summary of the work performed, including the environmental setting, site investigation methods, analytical results and data usability assessment, and findings and recommendations.

2.0 ENVIRONMENTAL SETTING

2.1. LAND USE AND SURFACE FEATURES

The Tradepoint Atlantic property consists of the former Sparrows Point steel mill. According to the Phase I Environmental Site Assessment (ESA) prepared by Weaver Boos dated May 19, 2014, the property is zoned Manufacturing Heavy-Industrial Major (MH-IM). Surrounding property zoning classifications (beyond Tradepoint Atlantic) include the following: Manufacturing Light (ML); Resource Conservation (RC); Density Residential (DR); Business Roadside (BR); Business Major (BM); Business Local (BL); and Residential Office (RO). Light industrial and commercial properties are located northeast of the property and northwest of the property across Bear Creek. Residential areas of Edgemere and Fort Howard are located northeast of the property across Jones Creek and to the southeast across Old Road Bay, respectively. Residential and commercial areas of Dundalk are located northwest of the property across Bear Creek.

The surface elevations across the majority of Parcel B24 range between approximately 8 and 12 feet above mean sea level (amsl). The elevations across the Site appear to be relatively uniform in most areas. An elevated berm surrounds the emergency detention basin to the north of the HCWWTP. According to Figure B-2 of the Stormwater Pollution Prevention Plan (SWPPP) Revision 8 dated April 30, 2020, surface water runoff from the Site flows through National Pollutant Discharge Elimination System (NPDES) permitted Outfall 014 beyond the HCWWTP, which discharges to Bear Creek.

2.2. REGIONAL GEOLOGY

The Site is located within the Atlantic Coastal Plain Physiographic Province (Coastal Plain). The western boundary of the Coastal Plain is the "Fall Line", which separates the Coastal Plain from the Piedmont Plateau Province. The Fall Line runs from northeast to southwest along the western boundary of the Chesapeake Bay, passing through Elkton (MD), Havre de Grace (MD), Baltimore City (MD), and Laurel (MD). The eastern boundary of the Coastal Plain is the off-shore Continental Shelf.

The unconsolidated sediments beneath the Site belong to the Talbot Formation (Pleistocene), which is then underlain by the Cretaceous formations which comprise the Potomac Group (Patapsco Formation, Arundel Formation and the Patuxent Formation). The Potomac Group formations are comprised of unconsolidated sediments of varying thicknesses and types, which may be several hundred feet to several thousand feet thick. These unconsolidated formations may overlie deeper Mesozoic and/or Precambrian bedrock. Depth to bedrock is approximately 700 feet within the Site.

2.3. SITE GEOLOGY/HYDROGEOLOGY

Groundcover at the Site is comprised of approximately 5% natural soils and 95% non-native fill materials (i.e., slag) based on the approximate shoreline of the Sparrows Point Peninsula in 1916, as shown on **Figure 2** (adapted from Figure 2-20 in the Description of Current Conditions (DCC) Report prepared by Rust Environment and Infrastructure dated January 1998).

In general, the encountered subsurface geology included interbedded non-native fill materials (sand, gravel, cobbles, slag, wood, and brick) and natural soils, which included fine-grained sediments (clays and silts) and coarse-grained sediments (sands and gravels). Non-native fill materials were encountered at depths of up to 20 feet below the ground surface (bgs). In addition, equipment refusals were encountered at several soil boring locations. The shallow groundwater table was observed in soil borings at depths ranging from 6.5 to 13.8 feet bgs across the Site; however, groundwater was not encountered at every boring location. Soil boring observation logs are provided in **Appendix B**. Please note that unless otherwise indicated, all Unified Soil Classification System (USCS) group symbols provided on the attached boring logs are from visual observations, and not from laboratory testing.

Groundwater was previously investigated in the vicinity of the Site (along the northern and eastern borders) during the separate Area B Groundwater Investigation, Parcel B8 Phase II Investigation, and Parcel B14 Phase II Investigation. Historical data were provided within the Parcel B24 Work Plan. To supplement the existing data six temporary groundwater sample collection points (commonly referred to as piezometers) were installed across the parcel to investigate shallow groundwater conditions. The Parcel B24 Work Plan had originally proposed only five piezometers; however, an additional sample location (B24-036-PZ) was added at the request of the MDE. The locations of the completed piezometers are indicated on **Figure 3**. The piezometers were surveyed by a Maryland-licensed surveyor, and the supporting documentation from the survey is included in **Appendix C**.

Static groundwater elevation measurements were obtained from each piezometer. Surveyed top of casing (TOC) and ground surface elevations for all piezometers can be found in **Table 1**, along with the static depth to water (DTW) measurements. The groundwater elevations calculated from the survey data and gauging measurements are shown on **Table 1** and **Figure 3**. Based on the gauging measurements and resulting groundwater contours, the water table appears to be relatively flat. Bear Creek is the presumed discharge location for regional groundwater.

Additionally, two existing shallow wells (TM02-PZM009 and TM03-PZM004) upgradient from the TMC were added to the sampling plan at the request of the CBF and BWB. These wells are also shown on **Figure 3**.

3.0 SITE INVESTIGATION

A total of 83 soil samples (from 37 boring locations) were collected for analysis between April 14, 2020 and April 21, 2020. Six groundwater samples were collected from shallow temporary piezometers between April 29, 2020 and May 1, 2020. Two supplemental groundwater samples were collected from shallow monitoring wells on September 17, 2020 (TM02-PZM009) and August 6, 2020 (TM03-PZM004). This Parcel B24 Phase II Investigation utilized methods and protocols that followed the procedures included in the Quality Assurance Project Plan (QAPP) dated April 5, 2016 approved by the agencies to support the investigation and remediation of the Tradepoint Atlantic property. Information regarding the project organization, field activities and sampling methods, sampling equipment, sample handling and management procedures, investigation-derived waste (IDW) management methods, and reporting requirements are described in detail in the approved Parcel B24 Work Plan (Revision 1 dated December 27, 2019), and the QAPP.

All site characterization activities were conducted under the property-wide Health and Safety Plan (HASP) provided as Appendix E of the approved Work Plan.

3.1. SAMPLE TARGET IDENTIFICATION

Previous activities within and around the buildings and facilities located on the Tradepoint Atlantic property may have been historical sources of environmental contamination. If present, source areas were identified as targets for sampling through a careful review of historical documents. When a sampling target was identified, at least two borings were placed at or around its location using GIS software (ArcMap Version 10.6).

Sampling targets included, as applicable, 1) RECs shown on the REC Location Map provided in Weaver Boos' Phase I ESA, 2) additional findings (non-RECs) from the Phase I ESA which were identified as potential environmental concerns, and 3) Solid Waste Management Units (SWMUs) and Areas of Concern (AOCs) identified from the DCC Report prepared by Rust Environment and Infrastructure. The following RECs were identified in the Parcel B24 Work Plan: HCWWTP Settling Basins (REC 7A, Finding 165, also listed as SWMU 10), HCWWTP Aerators (REC 7B, Finding 167, also listed as SWMU 12), and HCWWTP Emergency Detention Basin (REC 7C, Finding 173). There were no AOCs identified at the Site based on the DCC Report. Several SWMUs are cross-listed as RECs (listed above), but additional SWMUs at the Site were identified from the DCC Report as follows: HCWWTP Thickeners (SWMU 11), HCWWTP Wastewater Chemical Treatment Building (SWMU 13), HCWWTP Spent Pickle Liquor (SPL) Discharge Point (SWMU 14), HCWWTP Centrifuges (SWMU 15), HCWWTP Sludge Collection Box (SWMU 16), and HCWWTP Old Alum Tank (SWMU 17). The identified RECs and SWMUs are described in further detail within the Parcel B24 Work Plan.

Four sets of historical drawings were also reviewed to identify potential sampling targets for the Site. These drawings included the 5000 Set (Plant Arrangement), the 5100 Set (Plant Index), the 5500 Set (Plant Sewer Lines), and a set of drawings indicating coke oven gas distribution drip leg locations. Drip legs are points throughout the distribution system where coke oven gas condensate was removed from the gas pipelines. The condensate from the drip legs was typically discharged to drums, although it is possible some spilled out of the drums and onto the ground. A summary of the specific drawings covering the Site is presented in **Table 2**. Sampling target locations were identified if the historical drawings depicted industrial activities or a specific feature at a location that may have been a source of environmental contamination that potentially impacted the Site.

Based on the review of plant drawings (as well as a pre-investigation site visit conducted by ARM on March 15, 2018), additional non-REC sampling targets were identified at the Site that included the following: Electrical Sub-Stations, Caustic Solution Tanks, Sodium Hydrosulfide Tank, Sulfuric Acid Tank, Former Oil Aboveground Storage Tank, Tank Control Building & Polymer Storage & White Chemical Powder, Thickener Tanks, Sea Container/Chemical Storage, Trailer/Equipment Storage, Sludge Filter Cake Area, and Drip Leg #20. Three sampling plan targets were directly requested by the MDE: Parcel B14 Non-Aqueous Phase Liquid (NAPL) Detection Area, Bear Creek Shoreline, and Settling Basin #3. A summary of the areas that were investigated, along with the applicable boring identification numbers and the analyses performed, has been provided as **Appendix A**. During the completion of fieldwork, it was necessary to shift some borings from the approved locations given in the Work Plan, primarily due to access restrictions and/or refusal. **Table 3** provides the identification numbers of the adjusted borings, the coordinates of the proposed and final locations, and the distance/direction of the field shifts.

The density of soil borings met the requirements set forth in QAPP Worksheet 17 – Sampling Design and Rationale. The total area of the Site (25.7 acres) was evaluated according to the sampling density requirements for areas without engineered barriers. A total of 18 soil borings were required to meet the density specification; soil samples were collected from 37 soil borings during this Phase II Investigation.

3.2. SOIL INVESTIGATION

Continuous core soil borings were advanced at 37 locations across the Site to assess the presence or absence of soil contamination, and to assess the vertical distribution of any encountered contamination (**Figure 4**). Analytical soil samples were successfully collected from all of the proposed locations. The continuous core soil borings were advanced to a maximum depth of 20 feet bgs using the Geoprobe[®] MC-7 Macrocore soil sampler (surface to 10 feet bgs), and the Geoprobe[®] D-22 Dual-Tube Sampler (depths >10 feet bgs). At each of the completed boring locations, each soil core was visually inspected and screened with a hand-held photoionization detector (PID) prior to logging soil types. Soil boring logs have been included as **Appendix B**, and the PID calibration log has been included as **Appendix D**. Unless otherwise indicated, all USCS group symbols provided on the attached boring logs are from visual observations.

In each boring, one shallow sample was collected from the 0 to 1 foot depth interval. If a concrete slab or unsuitable surface cover materials (such as asphalt pavement) were present, the first 1 foot of soil beneath this layer was collected as the shallow sample. An underlying sample was collected from the 4 to 5 foot depth interval from each continuous core soil boring, but could be adjusted based on field observations. If the PID or other field observations indicated contamination to exist at a depth greater than 3 feet bgs but less than 9 feet bgs, and above the water table, the sample from the deeper 4 to 5 foot interval was shifted to the alternate depth interval. One additional set of samples was also collected from the 9 to 10 foot depth interval if groundwater had not been encountered. It should be noted that soil samples were not collected from a depth that was below the water table (unless otherwise noted). The 10-foot bgs samples were held by the laboratory prior to analysis in accordance with the requirements given in the Parcel B24 Work Plan. These project-specific requirements for the analysis of 10-foot bgs samples are further described below.

As noted in **Appendix A** and shown on the boring logs provided in **Appendix B**, soil samples investigating the Settling Basins (B24-025-SB, B24-026-SB, and B24-037-SB) were completed with an extra sample interval at a final depth between 12 and 16 feet bgs to fully investigate the vertical extent of the basins. Historic construction drawings indicated the basins were constructed to a depth of 17 feet bgs. These three borings were extended until refusal (between 12 and 16.5 feet bgs), and additional soil samples were collected as deep as possible. It is notable that concrete was observed at 16 feet bgs in B24-026-SB, indicating the bottom of the historical basin was reached. Samples were collected from below groundwater at these locations. Based on the nature of the borings targeting the basins, the deep samples were not held at the laboratory (per standard methods); rather, each sample was released to be analyzed for select analyses.

Soil sampling activities were conducted in accordance with the procedures and methods referenced in **Field Standard Operating Procedure (SOP) Numbers 008, 009, 012, and 013** provided in Appendix A of the QAPP. Down-hole soil sampling equipment was decontaminated after soil sampling had been concluded at a location, according to the procedures and methods referenced in **Field SOP Number 016** provided in Appendix A of the QAPP.

Each soil sample collected during this investigation was submitted to Pace Analytical Services, Inc. (PACE) for analysis. As stated above, the 10-foot bgs samples were held prior to analysis in accordance with the Parcel B24 Work Plan. Excluding these deep samples, the remaining soil samples were analyzed for Target Compound List (TCL) semi-volatile organic compounds (SVOCs) via USEPA Method 8270, Oil & Grease via USEPA Method 9071, total petroleum hydrocarbon (TPH) diesel range organics (DRO) and gasoline range organics (GRO) via USEPA Method 8015, Target Analyte List (TAL) Metals via USEPA Methods 6010 and 7471, hexavalent chromium via USEPA Method 7196, and cyanide via USEPA Method 9012.

Samples from any depth interval with a sustained PID reading of greater than 10 ppm were also analyzed for TCL volatile organic compounds (VOCs) via USEPA Method 8260. Additionally,

the shallow soil samples collected across the Site from the 0 to 1 foot bgs interval were analyzed for polychlorinated biphenyls (PCBs) via USEPA Method 8082. The soil samples were also submitted to Alpha Analytical, Inc. (Alpha) for analysis of polynuclear aromatic hydrocarbons (PAHs) via USEPA Method 8270 SIM. Sample containers, preservatives, and holding times for the sample analyses are listed in the QAPP Worksheet 19 & 30 – Sample Containers, Preservation, and Holding Times.

If the PID reading from the 9 to 10 foot bgs interval was less than 10 ppm, all parameters were held by the laboratory pending the analysis of the 0 to 1 and 4 to 5 foot bgs (or field adjusted interval) samples. If the 9 to 10 foot bgs interval exhibited a sustained PID reading of 10 ppm (not the case for any samples collected from Parcel B24), this sample would then be released to be analyzed for VOCs, SVOCs, TPH-DRO, TPH-GRO, and Oil & Grease. However, the samples for metals and cyanide would still be held by the laboratory pending the analysis of the 0 to 1 and 4 to 5 foot bgs interval samples. If the preliminary laboratory results from the intermediate (4 to 5 foot) interval indicated exceedances of the Project Action Limits (PALs) for any constituents, the held sample from the 9 to 10 foot bgs interval was then released to be analyzed for those constituents that exhibited PAL exceedances in the overlying sample.

3.3. GROUNDWATER INVESTIGATION

Six temporary groundwater sample collection points (piezometers) were installed in the shallow hydrogeologic zone to investigate groundwater below Parcel B24. The Parcel B24 Work Plan had originally proposed only five piezometers; however, an additional sample location (B24-036-PZ) was added at the request of the MDE. Additionally, two existing shallow groundwater monitoring wells (TM02-PZM009 and TM03-PZM004) upgradient from the TMC were added to the sampling plan at the request of the CBF and BWB. The eight groundwater sampling locations are displayed on **Figure 3**.

Piezometer installation activities were conducted in accordance with the procedures and methods referenced in **Field SOP Number 028**. The piezometers were installed at each location using the Geoprobe[®] DT22 Dual Tube sampling system. During the installation of each piezometer, soil types were logged and screened with a hand-held PID. The piezometer construction logs have been included as part of **Appendix B**. Following the installation of each sample collection point, the 0-hour depth to water was documented and the collection point was checked for the presence of NAPL using an oil-water interface probe in accordance with the methods referenced in **Field SOP Number 019** provided in Appendix A of the QAPP.

After the installation of each temporary groundwater sample collection point, down-hole equipment was decontaminated according to the procedures and methods referenced in **Field SOP Number 016** provided in Appendix A of the QAPP.

Groundwater samples were collected in accordance with methods referenced in **Field SOP Number 006** provided in Appendix A of the QAPP; which employed the use of laboratory supplied sample containers and preservatives, a peristaltic pump, dedicated polyethylene tubing, and a water quality multiparameter meter with a flow-through cell. Groundwater samples submitted for analysis of dissolved metals were filtered in the field with an in-line 0.45 micron filter. The sampling and purge logs (including the supplemental samples collected from the two permanent wells) have been included in **Appendix E**. Calibration of the multiparameter meter was performed before the start of each day of the sampling event, and a calibration post-check was completed at the end of the day. Appropriate documentation of the multiparameter meter calibration has also been included in **Appendix E**.

Groundwater samples were submitted to PACE to be analyzed for TCL-VOCs via USEPA Method 8260, TCL-SVOCs via USEPA Methods 8270 and 8270 SIM, TPH-DRO/GRO via USEPA Methods 5030/8015, Oil & Grease via USEPA Method 1664, TAL-Dissolved Metals via USEPA Methods 6010 and 7470, dissolved hexavalent chromium via USEPA Method 7196, and total cyanide via USEPA Method 9012. The two supplemental samples collected from the permanent wells were also submitted to PACE to be analyzed for total metals. Sample containers, preservatives, and holding times for the sample analyses are listed in the QAPP Worksheet 19 & 30 – Sample Containers, Preservation, and Holding Times.

Groundwater samples collected from the six temporary piezometers were submitted to Alpha to be analyzed for available cyanide via USEPA Method 9014. The two supplemental samples collected from the permanent wells were analyzed by Alpha for amenable cyanide via USEPA Method 4500 (the more suitable method) in lieu of available cyanide.

3.4. MANAGEMENT OF INVESTIGATION-DERIVED WASTE (IDW)

In accordance with **Field SOP Number 005** provided in Appendix A of the QAPP, potentially impacted materials, or IDW, generated during this Phase II Investigation was containerized in 55-gallon (DOT-UN1A2) drums. The types of IDW that were generated during this Phase II Investigation included the following:

- soil cuttings generated from soil borings or the installation of groundwater sample points;
- purged groundwater;
- decontamination fluids; and
- used personal protective equipment

Following the completion of field activities, a composite sample was gathered with aliquots from the Parcel B24 Phase II IDW soil drum for waste characterization. Following the analysis of the sample, the waste soil was characterized as non-hazardous. A list of all results from the soil waste characterization procedure can be found in **Table 4**. IDW drums containing aqueous materials

were characterized by preparing a composite sample from randomly selected drums. The composite sample included aliquots from several individual drums that were chosen as a subset of the aqueous drums being staged on the date of collection. Following the analysis of the sample, the aqueous waste was also characterized as non-hazardous. A list of all results from the aqueous waste characterization procedure can be found in **Table 5**. It should be noted that a small volume of additional aqueous IDW was generated during supplemental sample collection at TM02-PZM009 and TM03-PZM004 (in August and September 2020). The aqueous IDW from these two permanent wells is being managed in bulk with other property-wide aqueous IDW as appropriate.

The parcel-specific IDW drum log from the Phase II investigation is included as **Appendix F**. All IDW procedures were carried out in accordance with methods referenced in the QAPP Worksheet 21 - Field SOPs and Appendix A of the QAPP.

4.0 ANALYTICAL RESULTS

4.1. SOIL CONDITIONS

Soil analytical results were screened against PALs established in the property-wide QAPP (or other direct guidance from the agencies; i.e. TPH/Oil & Grease) to determine PAL exceedances. PALs are generally based on the USEPA's Regional Screening Levels (RSLs) for the Composite Worker exposure to soil. The Composite Worker is defined by the USEPA as a long-term receptor exposed during the workday who is a full-time employee that spends most of the workday conducting maintenance activities (which typically involve on-site exposures to surface soils) outdoors.

The analytical results for the detected parameters are summarized and compared to the PALs in **Table 6** (Organics) and **Table 7** (Inorganics). The laboratory Certificates of Analysis (including Chains of Custody) and Data Validation Reports (DVRs) have been included as electronic attachments. The DVRs contain a glossary of qualifiers for the final flags assigned to individual results in the attached summary tables.

4.1.1. Soil Conditions: Organic Compounds

As provided in **Table 6**, several VOCs were identified above the laboratory's method detection limits (MDLs) in the soil samples collected from across the Site. There were no VOCs detected above their respective PALs.

Table 6 provides a summary of SVOCs detected above the laboratory's MDLs in the soil samples collected from across the Site. The PALs for relevant PAHs have been adjusted upward based on revised toxicity data published in the USEPA RSL Composite Worker Soil Table. Therefore, exceedances for PAHs are based on the adjusted PALs rather than those presented in the QAPP. One SVOC (benzo[a]pyrene) was detected above its PAL. Benzo[a]pyrene was detected above the PAL in seven soil samples, with a maximum detection of 3.7 mg/kg in sample B24-007-SB-5. The SVOC PAL exceedance locations and results are provided on **Figure S1**.

Shallow soil samples collected across the Site from the 0 to 1 foot bgs (or adjusted) interval were analyzed for PCBs. **Table 6** provides a summary of PCBs detected above the laboratory's MDLs. There were no detections of any PCB mixtures (i.e., individual aroclors or total PCBs) above the applicable PALs.

Table 6 provides a summary of the TPH/Oil & Grease detections above the laboratory's MDLs in the soil samples collected in the parcel. Exceedances of the Oil & Grease PAL (6,200 mg/kg) were noted in three samples: B24-032-SB-5 with a detection of 32,200 mg/kg, B24-037-SB-8 with a detection of 14,900 mg/kg, and B24-037-SB-10 with a detection of 19,200 mg/kg. These locations had underlying soil samples which had significantly lower detections of Oil & Grease that did not exceed the PAL. The 10-foot sample at B24-032-SB had an Oil & Grease detection

of 68.9 mg/kg (flagged with the "J" qualifier), and the 12-foot sample at B24-037-SB had an Oil & Grease detection of 2,860 mg/kg, both of which are significantly below the PAL. There were no PAL exceedances of TPH-DRO or TPH-GRO in any of the soil samples collected at the Site. No physical evidence of NAPL was noted in the soil cores collected from B24-032-SB or B24-037-SB. The Oil & Grease PAL exceedance locations and results are provided on **Figure S2**. In addition, there were two boring locations where physical evidence of NAPL was identified in the soil cores (B24-003-SB and B24-034-SB). These boring locations with evidence of NAPL are also highlighted on the exceedance figure. The observations of NAPL, and subsequent delineation, are discussed in greater detail in Section 4.3.

4.1.2. Soil Conditions: Inorganic Constituents

Table 7 provides a summary of inorganic constituents detected above the laboratory's MDLs in the soil samples collected from across the Site. Five inorganics (arsenic, hexavalent chromium, lead, manganese, and thallium) were detected above their respective PALs. Arsenic was by far the most common inorganic exceedance. It was detected above its PAL (3 mg/kg) in 46 soil samples collected from the Site, with a maximum detection of 123 mg/kg at B24-032-SB-1. The remaining inorganic exceedances in soil were less common by comparison. Hexavalent chromium was detected in one sample above its PAL at 6.4 mg/kg (flagged with the "J-" qualifier) in B24-005-SB-4. Lead was detected above its PAL in three samples with a maximum detection of 1,300 mg/kg in B24-031-SB-1.5. Manganese was detected above its PAL in 16 samples with a maximum detection of 51,900 mg/kg in B24-024-SB-5. Thallium was detected above its PAL in four samples with a maximum detection of 17.1 mg/kg in B24-028-SB-5. The inorganic PAL exceedance locations and results are provided on **Figure S3**.

4.1.3. Soil Conditions: Results Summary

Table 6 and **Table 7** provide summaries of the detected organic compounds and inorganics in the soil samples submitted for laboratory analysis, and **Figure S1** through **Figure S3** present the soil boring locations and sample results that exceeded the PALs. **Table 8** provides a summary of results for all PAL exceedances in soil, including maximum values and detection frequencies. **Table 9** indicates which soil impacts (PAL exceedances) are associated with the specific targets listed in the Parcel B24 Work Plan. Exceedances of the PALs among the Parcel B24 soil samples consisted of one SVOC (benzo[a]pyrene), Oil & Grease, and five inorganics (arsenic, hexavalent chromium, lead, manganese, and thallium). Physical evidence of NAPL was also observed in the soil cores at two locations (B24-003-SB and B24-034-SB) which are discussed in Section 4.3. There were no detections of VOCs, PCBs, or TPH-DRO/GRO above the PALs.

Lead, PCBs, and TPH/Oil & Grease are subject to special requirements as designated by the agencies: lead results above 10,000 mg/kg are subject to additional delineation (and possible excavation), PCB results above 50 mg/kg are subject to delineation and excavation, and TPH/Oil

& Grease results above 6,200 mg/kg should be evaluated for the potential presence and mobility of NAPL in any future development planning:

- There were no locations where detections of lead exceeded 10,000 mg/kg, the designated threshold at which delineation would be required.
- There were no locations where detections of PCBs exceeded 50 mg/kg, the designated threshold at which delineation and excavation would be required.
- There were no PAL exceedances of TPH-DRO/GRO in any of the soil samples collected at the Site. Three soil samples (at two boring locations) had detected concentrations of Oil & Grease above the PAL of 6,200 mg/kg: B24-032-SB-5, B24-037-SB-8, and B24-037-SB-10. These locations had underlying soil samples which had significantly lower detections of Oil & Grease that did not exceed the PAL. However, both identified boring locations should be considered for proximity to proposed utilities in any future development plans. Physical evidence of NAPL was observed at soil borings B24-003-SB and B24-034-SB (see Section 4.3). These locations should also be considered for proximity to any future proposed utilities.

4.2. GROUNDWATER CONDITIONS

The analytical results for the detected parameters in groundwater are summarized and compared to the PALs in **Table 10** (Organics) and **Table 11** (Inorganics). These tables include the two supplemental groundwater samples collected from TM02-PZM009 and TM03-PZM004. The laboratory Certificates of Analysis (including Chains of Custody) and the DVRs have been included as electronic attachments. The DVRs contain a glossary of qualifiers for the final flags assigned to individual results in the attached summary tables.

4.2.1. Groundwater Conditions: Organic Compounds

Table 10 provides a summary of VOCs identified in groundwater samples above the laboratory's MDLs. One VOC (benzene) was detected slightly above its PAL at location TM02-PZM009 with a detection of 5.7 μ g/L. No other VOCs were detected above their respective PALs. The benzene exceedance is shown on **Figure GW1**.

Table 10 provides a summary of SVOCs identified in groundwater samples above the laboratory's MDLs. Similar to the evaluation of the soil data, the PALs for relevant PAHs have been adjusted upward based on revised toxicity data published in the USEPA RSL Resident Tapwater Table. A total of five SVOCs (1,1-biphenyl, 3&4-methylphenol, benz[a]anthracene, naphthalene, and nitrobenzene) were detected above their respective aqueous PALs. Naphthalene was the only SVOC with multiple PAL exceedances (four total locations), with a maximum detected

concentration of 56.8 μ g/L in TM02-PZM009. The SVOC PAL exceedance locations and results are provided on **Figure GW2**.

Table 10 provides a summary of the TPH/Oil & Grease detections in groundwater at the Site. TPH-GRO was not detected in any of the groundwater samples. TPH-DRO was detected above its PAL at all of the completed sample locations with the exception of B24-035-PZ. The maximum detection of TPH-DRO was 8,200 μ g/L (flagged with the "J" qualifier) at B24-034-PZ. Oil & Grease was detected above the PAL at B24-034-PZ and TM03-PZM004, with a maximum detection of 3,800 μ g/L (flagged with the "J" qualifier) also at B24-034-PZ. The TPH/Oil & Grease PAL exceedance locations and results are provided on **Figure GW3**. Each location was checked for the potential presence of NAPL using an oil-water interface probe prior to sampling. During these checks, NAPL was not detected in any of the groundwater sample collection locations; however, trace NAPL had previously been observed at B24-003-PZ (during the 0-hour gauging event only) and is discussed in Section 4.3.

4.2.2. Groundwater Conditions: Inorganic Constituents

Table 11 provides a summary of inorganic constituents detected above the MDLs in the groundwater samples collected from across the Site. Two metals (hexavalent chromium and vanadium) were detected in groundwater above their PALs at multiple sample locations. The maximum detection of hexavalent chromium in groundwater was 23.6 μ g/L at B24-027-PZ. The maximum detection of vanadium in groundwater was 312 μ g/L at B24-034-PZ. The inorganic PAL exceedance locations and results are provided on **Figure GW4**.

4.2.3. Groundwater Conditions: Results Summary

Table 10 and **Table 11** provide summaries of the detected organic compounds and inorganics in the groundwater samples submitted for laboratory analysis, and **Figure GW1** through **Figure GW4** present the locations and aqueous results that exceeded the PALs. Aqueous PAL exceedances among the groundwater samples collected from the six piezometers and two existing monitoring wells consisted of one VOC (benzene), five SVOCs (1,1-biphenyl, 3&4-methylphenol, benz[a]anthracene, naphthalene, and nitrobenzene), TPH-DRO, Oil & Grease, and two metals (hexavalent chromium and vanadium).

Groundwater data were screened to determine whether individual sample results may exceed the USEPA Vapor Intrusion (VI) Screening Levels (Target Cancer Risk (TCR) of 1E-5 and Target Hazard Quotient (THQ) of 1) as determined by the Vapor Intrusion Screening Level (VISL) Calculator (https://www.epa.gov/vaporintrusion/vapor-intrusion-screening-levels-visls). The PALs specified in the QAPP are based upon drinking water use, which is not a potential exposure pathway for groundwater at the Site.

None of the aqueous results exceeded the individual VI TCR or THQ criteria as specified by the VISL Calculator. Following the initial screening, a cumulative VI risk assessment was also performed for each individual sample location, with the results separated by cancer risk versus non-cancer hazard. All compounds with detections were included in the computation of the cumulative cancer risk, and all compounds with detections exceeding 10% of the THQ level were included in the evaluation of non-cancer hazard. None of the cumulative VI cancer risks were greater than 1E-5, and there were no compounds above the 10% THQ level. The cumulative VI comparisons are provided in **Table 12**.

The presence and absence of groundwater impacts within the Site boundaries have been adequately described. Groundwater is not used on the Tradepoint Atlantic property (and is not proposed to be utilized). There were no concerns related to potential VI risks/hazards at the Site. Based on the relatively low-level analytical results identified during this investigation, there do not appear to be significant ongoing sources of groundwater contamination present.

4.3. SUMMARY OF NAPL OBSERVATIONS

Soil cores were screened for evidence of possible NAPL contamination during the completion of the Phase II Investigation. During the field screening, two locations (B24-003-SB and B24-034-SB) had observations of physical evidence of NAPL in the soil cores. These two locations are highlighted on **Figure S2**. As noted on the boring logs (**Appendix B**), a light amount of product sheen was observed in the soil core of B24-003-SB from 13.7 to 14.3 feet bgs and a trace product sheen, accompanied by an odor, was observed in the soil core of B24-034-SB from 12 to 14 feet bgs. The Parcel B24 Work Plan had designated that temporary groundwater sample collection points were to be installed at both B24-003-SB and B24-034-SB. Therefore, the groundwater sample collection points also functioned as NAPL screening piezometers. The piezometers were checked for the presence of NAPL using an oil-water interface probe immediately after installation, approximately 48 hours after installation, and again after at least 30 days in accordance with standard procedures.

A trace amount of NAPL was observed during the 0-hour gauging event at piezometer B24-003-PZ, but this was the only observation at any location. Four additional piezometers were installed surrounding B24-003-PZ to delineate the extent of NAPL contamination. The NAPL delineation activities (including construction logs for the additional delineation piezometers) are detailed in the Parcel B24 NAPL Completion Report dated September 16, 2020, which is included as an electronic attachment to this Phase II Investigation Report. No additional action is planned in the vicinity of B24-003-SB or B24-034-SB.

In addition to the boring locations with physical evidence of NAPL, the soil analytical results exceeded the Oil & Grease PAL (6,200 mg/kg) in three samples (B24-032-SB-5, B24-037-SB-8, and B24-037-SB-10). The elevated analytical detections did not correspond to the locations with physical evidence of NAPL discussed above. An underlying soil sample was collected at both

Tradepoint Atlantic Sparrows Point

B24-032-SB and B24-037-SB and analyzed for Oil & Grease. The 10-foot sample at B24-032-SB had an Oil & Grease detection of 68.9 mg/kg (flagged with the "J" qualifier), and the 12-foot sample at B24-037-SB had an Oil & Grease detection of 2,860 mg/kg, both of which are significantly below the PAL. The potentially impacted borings (i.e., those with physical evidence of NAPL or elevated detections of Oil & Grease) should be evaluated for proximity to proposed utilities in any future development planning for Parcel B24.

5.0 DATA USABILITY ASSESSMENT

The approved property-wide QAPP specified a process for evaluating data usability in the context of meeting project goals. Specifically, the goal of the Phase II Investigation is to determine if potentially hazardous substances or petroleum products (VOCs, SVOCs, PCBs, metals, cyanide, Oil & Grease, or TPH-DRO/GRO) are present in site media (soil and groundwater) at concentrations that could pose an unacceptable risk to Site receptors. Individual results are compared to the PALs established in the QAPP (i.e., the most current USEPA RSLs) or based on other direct guidance from the agencies, to identify the presence of exceedances in each environmental medium.

Quality assurance and quality control (QA/QC) samples were collected during field studies to evaluate field/laboratory variability. A summary of QA/QC samples associated with this investigation has been included as **Appendix G**. The following QA/QC samples were required by the QAPP to support the data validation:

- Trip Blank at a rate of one per cooler with VOC samples per day
 - \circ Soil VOCs only
 - \circ Water VOCs only
- Blind Field Duplicate at a rate of one per twenty samples
 - Soil VOCs, SVOCs, Metals, TPH-DRO, TPH-GRO, Oil & Grease, PCBs, hexavalent chromium, and cyanide
 - Water VOCs, SVOCs, Metals, TPH-DRO, TPH-GRO, Oil & Grease, hexavalent chromium, and cyanide
- Matrix Spike/Matrix Spike Duplicate at a rate of one per twenty samples
 - Soil VOCs, SVOCs, Metals, TPH-DRO, TPH-GRO, Oil & Grease, PCBs, and hexavalent chromium
 - Water VOCs, SVOCs, Metals, TPH-DRO, TPH-GRO, Oil & Grease, and hexavalent chromium
- Field Blank and Equipment Blank at a rate of one per twenty samples
 - Soil VOCs, SVOCs, Metals, TPH-DRO, TPH-GRO, Oil & Grease, hexavalent chromium, and cyanide
 - Water VOCs, SVOCs, Metals, TPH-DRO, TPH-GRO, Oil & Grease, hexavalent chromium, and cyanide

The QA/QC samples were collected and analyzed in accordance with the QAPP Worksheet 12 – Measurement Performance Criteria, QAPP Worksheet 20 – Field Quality Control, and QAPP Worksheet 28 – Analytical Quality Control and Corrective Action.

5.1. DATA VERIFICATION

A verification review was performed on documentation generated during sample collection and analysis. The verification included a review of field log books, field data sheets, and Chain of Custody forms to ensure that all planned samples were collected, and to ensure consistency with the field methods and decontamination procedures specified in the QAPP Worksheet 21 – Field SOPs and Appendix A of the QAPP. In addition, calibration logs were reviewed to ensure that field equipment was calibrated and/or checked once per day. The logs have been provided in **Appendix D** (PID calibration log) and **Appendix E** (multiparameter meter calibration logs).

The laboratory deliverables were reviewed to ensure that all records specified in the QAPP as well as necessary signatures and dates are present. Sample receipt records were reviewed to ensure that the sample condition upon receipt was noted, and any missing/broken sample containers (if any) were noted and reported according to plan. The data packages were compared to the Chains of Custody to verify that results were provided for all collected samples. The data package case narratives were reviewed to ensure that all exceptions (if any) are described.

5.2. DATA VALIDATION

USEPA Stage 2B data validation was completed for a representative 30% of the environmental sample analyses performed by PACE and Alpha and supporting Level IV Data Package information by Environmental Data Quality Inc. (EDQI). The DVRs provided by EDQI have been included as electronic attachments.

Sample analyses have undergone an analytical quality assurance review to ensure adherence to the required protocols. The Stage 2B review was performed as outlined in "Guide for Labeling Externally Validated Laboratory Analytical Data for Superfund Use", EPA-540-R-08-005. Results have been validated or qualified according to general guidance provided in "USEPA National Functional Guidelines for Inorganic Superfund Data Review (ISM02.1)", USEPA October 2013. Region III references this guidance for validation requirements. This document specifies procedures for validating data generated for Contract Laboratory Program (CLP) analyses. The approved QAPP and the quality control requirements specified in the methods and associated acceptance criteria were also used to evaluate the non-CLP data.

The PACE-Greensburg (PA) laboratory facility implements quality assurance and reporting requirements through the TNI certification program with the State of Pennsylvania which is accepted by Maryland. Since late-January 2017, these requirements include the flagging of contaminants with a "B" qualifier when an analyte is detected in an associated laboratory method blank, regardless of the level of the contaminant detected in the sample. A method blank is analyzed at a rate of one blank for each 20 sample analytical batch. The USEPA has previously specified that results flagged with the "B" qualifier do not represent legitimate detections. They have also specified that results flagged with a "JB" qualifier are invalid, and any such results should be revised to display the "B" qualifier only.

Although elevated sample results may be "B" qualified by the laboratory as non-detects due to low-level blank detections, EDQI corrects any erroneous "B" qualifiers during the data validation procedure to avoid under-reporting analytical detections. EDQI removes the "B" qualifiers for relevant samples according to the guidance given in the table below. Therefore, a result originally flagged with a "B" qualifier in the laboratory certificate may be reported as a legitimate detection without this qualifier. Likewise, a result originally flagged with a "JB" qualifier in the laboratory certificate may be reported as a "J" qualifier if the erroneous "B" qualifier can be eliminated, but would be reported as a "B" qualified non-detect result if the original "B" qualifier is legitimate.

Blank Result	Sample Result	Qualifying Action	
Desult loss than DI	Result less than RL	Result is Qualified "B"	
Result less than RL	Result greater than RL	Remove "B"	
Desult greater than DI	Result less than Blank Result	Result is Qualified "B"	
Result greater than RL	Result greater than Blank Result	Remove "B"	

RL = Reporting Limit

As directed by EDQI, ARM has reviewed all non-validated laboratory reports (those which were not designated to be reviewed by EDQI), and applied the same validation corrections to any relevant "B" or "JB" qualified results. This review of the non-validated data ensures that any elevated detections of parameters, including those which may exceed the PALs, are not mistakenly reported as non-detect values simply because they did not undergo the formal validation procedure by EDQI. ARM has also revised the non-validated results to eliminate any laboratory-specific, non-standardized qualifiers (L2, 6c, ip, 4c, etc.), which are customarily removed by EDQI during the validation procedure.

5.3. DATA USABILITY

The data were evaluated with respect to the quality control elements of precision, bias, representativeness, comparability, completeness, and sensitivity relative to data quality indicators and performance measurement criteria outlined in QAPP Worksheet 12 – Measurement Performance Criteria. The following discussion details deviation from the performance measurement criteria, and the impact on data quality and usability.

The measurement performance criteria of precision and bias were evaluated in the data validation process as described in the DVRs provided as electronic attachments. Where appropriate, potential limitations in the results have been indicated through final data flags. These flags indicate whether particular data points were quantitative estimates, biased high/low, associated with blank contamination, etc. Individual data flags are provided with the results in the detection summary tables. A qualifier code glossary is included with each DVR provided by EDQI. Particular results may have been marked with the "R" flag if the result was deemed to be unreliable and was not included in any further evaluation. **Table 13** provides a list of the analytical soil results that were

rejected during data validation. No analytical groundwater results were rejected during data validation. Data completeness (the proportion of valid data) is discussed below.

Representativeness is a measure of how accurately and precisely the data describe the Site conditions. Representativeness of the samples submitted for analysis was ensured by adherence to standard sampling techniques and protocols, as well as appropriate sample preservation prior to analysis. Sampling was conducted in accordance with the QAPP Worksheet 21 – Field SOPs and Appendix A of the QAPP. Specific Field SOPs applicable to the assessment of representativeness include **Field SOP Numbers 006, 008, 009, 010, 011, 017, and 024**. Review of the field notes and laboratory sample receipt records indicated that collection of soil and groundwater at the Site was representative, with no significant deviations from the SOPs.

Comparability describes the degree of confidence in comparing two sets of data. Comparability is maintained across multiple datasets by the use of consistent sampling and analytical methods across multiple project phases. Comparability of sample results was ensured through the use of approved standard sampling and analysis methods outlined in the QAPP. QA/QC protocols help to maintain the comparability of datasets, and in this case were assessed via blind duplicates, blank samples, and spiked samples, where applicable. No significant deviations from the QAPP were noted in the dataset.

Sensitivity is a determination of whether the analytical methods and quantitation limits will satisfy the requirements of the project. The laboratory reports were reviewed to verify that reporting limits met the quantitation limits for specific analytes provided in QAPP Worksheet #15 – Project Action Limits and Laboratory-Specific Detection/Quantitation Limits. In general, the laboratory reporting limits met the detection and quantitation limits specified in the QAPP.

Completeness is expressed as a ratio of the number of valid data points to the total number of analytical data results. Non-usable ("R" flagged) data results were determined through the data validation process. The approved QAPP specifies that the completeness of data is assessed by professional judgement but should be greater than or equal to 90%. Data completeness for each compound is provided in **Appendix H**. This evaluation of completeness includes only the representative 30% of sample results which were randomly selected for validation.

A total of 14 analytes did not meet the completeness goal of 90% for soils in Parcel B24. A total of 11 acid-extractable SVOCs (2,3,4,6-tetrachlorophenol, 2,4,5-trichlorophenol, 2,4,6-trichlorophenol, 2,4-dichlorophenol, 2,4-dimethylphenol, 2,4-dinitrophenol, 2-chlorophenol, 2-methylphenol, 3&4-methylphenol, pentachlorophenol, and phenol) had completeness values of 87%, which is close to the stated goal. 1,1,2,2-tetrachloroethane was the only VOC with a soil completeness ratio below 90%, however the completeness ratio of 83% is close to the stated goal. Likewise, hexavalent chromium was the only metal with a soil completeness ratio below 90%, but the completeness ratio of 73% is close to the stated goal.

The full dataset of 1,4-dioxane soil results which underwent the validation process was rejected. The rejection of the soil results for 1,4-dioxane has not been uncommon for data obtained from the Tradepoint Atlantic property. Sufficient information is available in the groundwater dataset to evaluate the presence and significance of 1,4-dioxane (as well as the other analytes listed above) at the Site.

While a limited set of analytes did not meet the completeness goal of 90%, significant data gaps have not been identified.

6.0 FINDINGS AND RECOMMENDATIONS

The objective of this Parcel B24 Phase II Investigation was to characterize the nature and extent of contamination at the Site. During the Phase II Investigation, a total of 83 soil samples (all locations/depths) were collected from soil borings, six groundwater samples were collected from shallow temporary piezometers, and two supplemental groundwater samples were collected from existing shallow monitoring wells (TM02-PZM009 and TM03-PZM004). The sampling and analysis plan for the parcel was developed to target specific features that represented a potential release of hazardous substances and/or petroleum products to the environment.

Soil samples were analyzed for TCL-VOCs, TCL-SVOCs, TPH-DRO/GRO, Oil & Grease, TAL-Metals, hexavalent chromium, and cyanide. Shallow soil samples (0 to 1 foot bgs) were additionally analyzed for PCBs. Groundwater samples were analyzed for TCL-VOCs, TCL-SVOCs, TPH-DRO/GRO, Oil & Grease, TAL-Dissolved Metals, dissolved hexavalent chromium, and total cyanide. The supplemental groundwater samples collected from the two permanent wells were also analyzed for total metals. The piezometer samples were additionally analyzed for available cyanide, whereas the permanent well samples were analyzed for amenable cyanide (the more suitable method).

6.1. SOIL

The concentrations of constituents in the soil have been characterized by the Phase II Investigation to provide estimates of exposure point concentrations to support risk assessment.

PCB concentrations are below levels that would warrant delineation and evaluation of a removal remedy (50 mg/kg). Additionally, lead concentrations were below the mandatory delineation threshold (10,000 mg/kg). No further action is required with respect to PCBs or lead at the Site. There were no soil PAL exceedances of VOCs, PCBs, or TPH-DRO/GRO, indicating that these compounds are not significant contaminants in soil at the Site. Exceedances of the soil PALs within Parcel B24 were limited to five inorganics (arsenic, hexavalent chromium, lead, manganese, and thallium), one SVOC (benzo[a]pyrene), and Oil & Grease.

Arsenic was the most common PAL exceedance, and was detected above its PAL in 46 total samples a maximum detection of 123 mg/kg in B24-032-SB-1. Hexavalent chromium was detected above its PAL in one sample (B24-005-SB-4) with a detection of 6.4 mg/kg (flagged with the "J-" qualifier). Lead was detected above its PAL in three samples with a maximum detection (1,300 mg/kg) in B24-031-SB-1.5. Manganese was detected above its PAL in 16 samples with a maximum detection (51,900 mg/kg) in B24-024-SB-5. Thallium was detected above its PAL in four samples with a maximum detection (17.1 mg/kg) in B24-028-SB-5. Benzo[a]pyrene was the only SVOC detected in soil above its PAL, with a total of seven exceedances and a maximum detection of 3.7 mg/kg in B24-007-SB-5.

Elevated concentrations of Oil & Grease were identified above the PAL (6,200 mg/kg) in three samples: B24-032-SB-5 at 32,200 mg/kg, B24-037-SB-8 at 14,900 mg/kg, and B24-037-SB-10 at 19,200 mg/kg. However, no physical evidence of NAPL was noted in the soil cores at these two locations, and Oil & Grease detections in the underlying soil samples were significantly below the PAL in both cases. Two other boring locations had physical evidence of NAPL identified in the soil cores (B24-003-SB and B24-034-SB). These boring locations with observed NAPL are discussed in Section 6.3.

6.2. GROUNDWATER

The concentrations of constituents in the groundwater have also been characterized by the Phase II Investigation to provide estimates of exposure point concentrations to support risk assessment.

Exceedances of the aqueous PALs in groundwater below Parcel B24 consisted of two metals (hexavalent chromium and vanadium), one VOC (benzene), five SVOCs (1,1-biphenyl, 3&4-methylphenol, benz[a]anthracene, naphthalene, and nitrobenzene), TPH-DRO, and Oil & Grease. The maximum detection of hexavalent chromium was 23.6 μ g/L (at B24-027-PZ) and the maximum detection of vanadium was 312 μ g/L (at B24-034-PZ). Benzene was detected above its PAL at only one location (TM02-PZM009) with a detection of 5.7 μ g/L. Naphthalene was the only SVOC with multiple PAL exceedances (four total locations), with a maximum detection of 56.8 μ g/L (at TM02-PZM009).

TPH-DRO exceeded its PAL in every groundwater sample except B24-035-PZ, with a maximum detection of 8,200 μ g/L (flagged with the "J" qualifier) at B24-034-PZ. Oil & Grease exceeded the PAL at two locations, with a maximum detection of 3,800 μ g/L (flagged with the "J" qualifier) also at B24-034-PZ. Each groundwater sample location was checked for the potential presence of NAPL using an oil-water interface probe prior to sampling. During these checks, NAPL was not detected in any of the groundwater sample collection locations; however, trace NAPL had previously been observed at B24-003-PZ (during the 0-hour gauging event only).

Groundwater is not used on the Tradepoint Atlantic property (and is not proposed to be utilized); therefore, there is no potential for direct human exposure for a Composite Worker. In the event that future construction/excavation leads to a potential Construction Worker exposure to groundwater, health and safety plans should be implemented to limit exposure risk. The groundwater data were screened to determine whether any cumulative (or individual) sample results exceeded the USEPA VI TCR (carcinogen) or THQ (non-carcinogen) Screening Levels. None of the individual sample results exceeded the VI TCR or THQ criteria. When the aqueous results were summed by sample location, none of the cumulative VI cancer risks exceeded 1E-5, and none of the cumulative VI non-cancer HI values exceeded 1. There are no concerns related to potential VI risks at the Site.

All temporary groundwater sample collection points were properly abandoned on July 1, 2020 by a Maryland-licensed driller and in accordance with Maryland abandonment standards as stated in COMAR 26.04.04.34 through 36. Each piezometer was gauged a final time with the oil-water interface probe on the abandonment date to confirm that NAPL had not accumulated in the casing. The piezometer abandonment forms are included as **Appendix I**.

6.3. NAPL

There were three soil samples with elevated detections of Oil & Grease reported above the PAL (6,200 mg/kg) at the Site: B24-032-SB-5, B24-037-SB-8, and B24-037-SB-10. These PAL exceedances could be indicative of potential NAPL impacts, although no physical evidence of NAPL was observed in the associated soil cores. An underlying soil sample was collected at both B24-032-SB and B24-037-SB and analyzed for Oil & Grease. The 10-foot sample at B24-032-SB had an Oil & Grease detection of 68.9 mg/kg (flagged with the "J" qualifier), and the 12-foot sample at B24-037-SB had an Oil & Grease detection of 2,860 mg/kg, both of which are significantly below the PAL.

During field screening of the soil cores installed during this investigation, borings B24-003-SB and B24-034-SB had minor observations of NAPL in the soil cores. The specific observations of NAPL are provided on the soil boring logs (**Appendix B**) and identified in Section 4.3. The potential mobility of NAPL to groundwater was evaluated via the installation and gauging of temporary piezometers at both locations. Trace NAPL was observed during the 0-hour gauging event at B24-003-PZ, and a small delineation investigation was subsequently performed in this area. The NAPL delineation activities are detailed in the Parcel B24 NAPL Completion Report dated September 16, 2020, which is included as an electronic attachment. No additional action is planned in the vicinity of B24-003-SB or B24-034-SB.

The borings identified with evidence of NAPL or elevated Oil & Grease detections should be evaluated for proximity to proposed utilities in any future development planning for Parcel B24.

6.4. RECOMMENDATIONS

Sufficient remedial investigation data has been collected to evaluate the nature and extent of possible constituents of concern in Parcel B24. The presence and absence of soil and groundwater impacts within Parcel B24 have been adequately described and further investigation is not warranted to characterize overall conditions. Recommendations for the Site are as follows:

• Soil borings with physical evidence of NAPL or elevated Oil & Grease concentrations (B24-003-SB, B24-032-SB, B24-034-SB, and B24-037-SB) should be considered for proximity to proposed utilities in any future development plans. If future utilities are proposed in the vicinity of these borings, appropriate protocols for the mitigation of

potential product (NAPL) mobility should be specified in a project-specific Response and Development Work Plan.

• The groundwater results from the temporary piezometers installed along Bear Creek within Parcel B24 are sufficiently clean for sentinel monitoring purposes. The placement of permanent sentinel monitoring wells will be evaluated as part of the larger property-wide groundwater monitoring program.

7.0 REFERENCES

- ARM Group Inc. (2019). *Phase II Investigation Work Plan Area B: Parcel B24*. Revision 1. December 27, 2019.
- ARM Group Inc. (2016). *Quality Assurance Project Plan: Sparrows Point Terminal Site*. Revision 3. April 5, 2016.
- ARM Group LLC (2020). NAPL Completion Report Area B: Parcel B24. September 16, 2020.
- ARM Group LLC (2020). *Stormwater Pollution Prevention Plan (SWPPP)*. Revision 8. April 30, 2020.
- Rust Environment & Infrastructure (1998). Description of Current Conditions: Bethlehem Steel Corporation. Final Draft. January 1998.
- USEPA (2017). Vapor Intrusion Screening Level (VISL) Calculator version 3.5. (https://www.epa.gov/vaporintrusion/vapor-intrusion-screening-levels-visls).
- Weaver Boos Consultants (2014). Phase I Environmental Site Assessment: Former RG Steel Facility. Final Draft. May 19, 2014.

FIGURES

Parcel B15		
Croundwater Sample		Eigure
ater Elevation Contour September 2H, 2020	s (ft AMSL)	3
	Tradepoint Atl	antic
ARM Group LLC	Sparrows Po	pint
Engineers and ocientists	Baltimore Cour	ity, MD
150 300	ARM Project 200	010224

TABLES

Table 1 - Parcel B24Groundwater Elevation Data

Location Name	TOC Elevation (feet AMSL)	Ground Elevation (feet AMSL)	Measured DTW (feet)*	<u>Groundwater</u> <u>Elevation</u> (feet AMSL)
B24-001-PZ	12.96	9.81	12.02	0.94
B24-003-PZ	13.93	10.61	12.17	1.76
B24-027-PZ	11.60	8.73	10.83	0.77
B24-034-PZ	11.51	8.71	10.72	0.79
B24-035-PZ	12.80	9.96	11.91	0.89
B24-036-PZ	14.05	11.25	13.64	0.41

DTW = Depth to water

TOC = Top of casing

AMSL = Above mean sea level

* DTW measurements taken prior to piezometer abandonments (July 1, 2020)

Table 2 - Parcel B24Historical Site Drawing Details

<u>Set Name</u>	Typical Features Shown	<u>Drawing</u> <u>Number</u>	Original Date Drawn	Latest Revision Date
	Roads, water bodies,	5038	9/1/1958	3/11/1982
Plant Arrangement	building/structure footprints, electric lines, above-ground pipelines	5039	9/1/1958	3/11/1982
	(e.g.: steam, nitrogen, etc.)	5043	8/3/1959	3/11/1982
	Roads, water bodies, demolished	5138	Unknown	1/10/2008
Plant Index	buildings/structures, electric lines,	5139	Unknown	1/16/2008
	above-ground pipelines	5143	Unknown	8/15/2008
	Same as above plus trenches, sumps,	5538	Unknown	2/10/1975
Plant Sewer Lines	underground piping (includes pipe	5539	8/28/1959	2/21/1975
	materials)	5543	9/16/1959	4/1/1975
Drip Legs	Coke Oven Gas Drip Legs Locations	5887	Unknown	Sept. 1988

Proposed Location* Final Location* Relocation Location ID Sample Target Distance & Northing Easting Northing Easting Direction B24-001-SB Sub-Station 568,722 1,457,143 568,717 1,457,146 6 SE B24-003-SB Sub-Station 568,565 1,456,822 568,562 1,456,819 SW 4 B24-018-SB Thickener #1 568,807 1,457,369 568,824 1,457,363 19 Ν B24-019-SB Thickener #2 568,737 7 NW 568,731 1,457,348 1,457,343 B24-020-SB Thickener #2 568,685 1,457,439 568,660 1,457,448 27 SE B24-027-SB **Emergency Detention Basin** 569,181 1,456,804 569,151 31 S 1,456,801 1,457,246 B24-028-SB **Emergency Detention Basin** 569,286 1,457,202 569,288 42 E B24-029-SB **Emergency Detention Basin** 569,531 20 NW 569,523 1,456,820 1,456,799 B24-032-SB Drip Leg #20 569,010 1,456,645 12 NW 569,006 1,456,656 B24-033-SB 568,988 Drip Leg #20 568,982 1,456,659 1,456,642 18 NW B24-034-SB Parcel B14 NAPL Detection Area 569,477 1,457,158 569,459 1,457,177 27 SE B24-035-SB Bear Creek Shoreline 1,456,497 569,328 1,456,518 E 569,454 11 B24-036-SB Bear Creek Shoreline 569,041 569,054 1,456,639 1,456,539 100 Ε

Table 3 - Parcel B24Field Shifted Boring Locations

*Reported northings and eastings are not survey accurate. Coordinates are reported in NAD 1983 Maryland State Plane (US feet).

Sample ID	Parameter	<u>Result</u> (mg/L)	<u>Laboratory</u> <u>Flag</u>	<u>TCLP Limit</u> (mg/L)	<u>TCLP</u> Exceedance	Laboratory LOQ (mg/L)
	1,1-Dichloroethene	0.05	U	0.7	no	0.05
	1,2-Dichloroethane	0.05	U	0.5	no	0.05
	1,4-Dichlorobenzene	0.5	U	7.5	no	0.5
	2,4,5-Trichlorophenol	5	U	400	no	5
	2,4,6-Trichlorophenol	0.1	U	2	no	0.1
	2,4-Dinitrotoluene	0.1	U	0.13	no	0.1
	2-Butanone (MEK)	0.1	U	200	no	0.1
	2-Methylphenol	2	U	200	no	2
	3&4-Methylphenol(m&p Cresol)	2	U	200	no	2
	Arsenic	0.025	U	5	no	0.025
	Barium	0.27		100	no	0.05
	Benzene	0.05	U	0.5	no	0.05
	Cadmium	0.002	J	1	no	0.015
B24 IDW	Carbon tetrachloride	0.05	U	0.5	no	0.05
(5/10/20)	Chlorobenzene	0.05	U	100	no	0.05
(3/19/20)	Chloroform	0.05	U	6	no	0.05
	Chromium	0.025	U	5	no	0.025
	Hexachlorobenzene	0.1	U	0.13	no	0.1
	Hexachloroethane	0.2	U	3	no	0.2
	Lead	0.05	U	5	no	0.05
	Mercury	0.001	U	0.2	no	0.001
	Nitrobenzene	0.1	U	2	no	0.1
	Pentachlorophenol	5	U	100	no	5
	Selenium	0.04	U	1	no	0.04
	Silver	0.03	U	5	no	0.03
	Tetrachloroethene	0.05	U	0.7	no	0.05
	Trichloroethene	0.05	U	0.5	no	0.05
	Vinyl chloride	0.05	U	0.2	no	0.05

Table 4 - Parcel B24Characterization Results for Solid IDW

U: The analyte was not detected in the sample. The numeric value represents the sample LOQ.

J: The positive result reported for this analyte is a quantitative estimate.

TCLP: Toxicity Characteristic Leaching Procedure

LOQ: Limit of Quantitation

Sample ID	<u>Parameter</u>	<u>Result</u> (mg/L)	<u>Laboratory</u> <u>Flag</u>	<u>TCLP Limit</u> (mg/L)	<u>TCLP</u> Exceedance	Laboratory LOQ (mg/L)
	1,1-Dichloroethene	0.001	U	0.7	no	0.001
	1,2-Dichloroethane	0.001	U	0.5	no	0.001
	1,4-Dichlorobenzene	0.001	U	7.5	no	0.001
	2,4,5-Trichlorophenol	0.0025	U	400	no	0.0025
	2,4,6-Trichlorophenol	0.00099	U	2	no	0.00099
	2,4-Dinitrotoluene	0.00099	U	0.13	no	0.00099
	2-Butanone (MEK)	0.01	U	200	no	0.01
	2-Methylphenol	0.00099	U	200	no	0.00099
	3&4-Methylphenol(m&p Cresol)	0.002	U	200	no	0.002
	Arsenic	0.005	U	5	no	0.005
	Barium	0.0623		100	no	0.01
	Benzene	0.0063		0.5	no	0.001
	Cadmium	0.0061		1	no	0.003
IDW Water (5/19/20)	Carbon tetrachloride	0.001	U	0.5	no	0.001
	Chlorobenzene	0.001	U	100	no	0.001
	Chloroform	0.001	U	6	no	0.001
	Chromium	0.0023	J	5	no	0.005
	Hexachlorobenzene	0.00099	U	0.13	no	0.00099
	Hexachloroethane	0.00099	U	3	no	0.00099
	Lead	0.005	U	5	no	0.005
	Mercury	0.0002	U	0.2	no	0.0002
	Nitrobenzene	0.00099	U	2	no	0.00099
	Pentachlorophenol	0.0025	U	100	no	0.0025
	Selenium	0.008	U	1	no	0.008
	Silver	0.006	U	5	no	0.006
	Tetrachloroethene	0.001	U	0.7	no	0.001
	Trichloroethene	0.00092	J	0.5	no	0.001
	Vinyl chloride	0.001	U	0.2	no	0.001

Table 5 - Parcel B24Characterization Results for Liquid IDW

U: The analyte was not detected in the sample. The numeric value represents the sample LOQ.

J: The positive result reported for this analyte is a quantitative estimate.

TCLP: Toxicity Characteristic Leaching Procedure

LOQ: Limit of Quantitation

Darameter	Unite	DAI	B24-001-SB-1*	B24-001-SB-5*	B24-002-SB-1	B24-002-SB-4	B24-003-SB-1*	B24-003-SB-4*	B24-004-SB-1*	B24-004-SB-5*	B24-005-SB-1	B24-005-SB-4	B24-006-SB-1	B24-006-SB-4
Talalleter	Ollits	TAL	4/14/2020	4/14/2020	4/17/2020	4/17/2020	4/16/2020	4/16/2020	4/16/2020	4/16/2020	4/17/2020	4/17/2020	4/17/2020	4/17/2020
Volatile Organic Compounds														
2-Butanone (MEK)	mg/kg	190,000	N/A	N/A	N/A	N/A	N/A	0.015 U	N/A	N/A	N/A	N/A	N/A	N/A
Acetone	mg/kg	670,000	N/A	N/A	N/A	N/A	N/A	0.014 J	N/A	N/A	N/A	N/A	N/A	N/A
Benzene	mg/kg	5.1	N/A	N/A	N/A	N/A	N/A	0.0076 U	N/A	N/A	N/A	N/A	N/A	N/A
Carbon disulfide	mg/kg	3,500	N/A	N/A	N/A	N/A	N/A	0.0034 J	N/A	N/A	N/A	N/A	N/A	N/A
Cyclohexane	mg/kg	27,000	N/A	N/A	N/A	N/A	N/A	0.015 U	N/A	N/A	N/A	N/A	N/A	N/A
Ethylbenzene	mg/kg	25	N/A	N/A	N/A	N/A	N/A	0.0076 U	N/A	N/A	N/A	N/A	N/A	N/A
Toluene	mg/kg	47,000	N/A	N/A	N/A	N/A	N/A	0.0076 U	N/A	N/A	N/A	N/A	N/A	N/A
Semi-Volatile Organic Compoun	ds^				-	-	-		-					-
1,1-Biphenyl	mg/kg	200	0.075 U	0.29	0.74 U	0.021 J	0.74 U	0.73 U	0.7 U	0.076	0.072 U	0.073 U	0.072 U	0.71 U
2-Methylnaphthalene	mg/kg	3,000	0.015	0.1	0.076	0.07	0.21	0.057 J	0.024 J	0.037 J	0.036	0.0067 J	0.078	0.041
3,3'-Dichlorobenzidine	mg/kg	5.1	0.075 U	0.072 U	0.74 UJ	0.071 UJ	0.74 U	0.73 U	0.7 U	0.07 U	0.072 UJ	0.073 UJ	0.072 UJ	0.71 UJ
Acenaphthene	mg/kg	45,000	0.019	0.023	0.12	0.072	0.058 J	0.015 J	0.011 J	0.071 U	0.024	0.024	0.019	0.1
Acenaphthylene	mg/kg	45,000	0.0064 J	0.0072 U	0.046	0.048	0.81	0.016 J	0.016 J	0.0055 J	0.02	0.0053 J	0.022	0.037
Acetophenone	mg/kg	120,000	0.075 U	0.072 U	0.74 U	0.071 U	0.74 U	0.73 U	0.7 U	0.07 U	0.072 U	0.073 U	0.072 U	0.71 U
Anthracene	mg/kg	230,000	0.016	0.028	0.097	0.32	0.71	0.047 J	0.035 J	0.039 J	0.064	0.1	0.09	0.31
Benz[a]anthracene	mg/kg	21	0.67	0.11	0.72	1.8	1.5	0.063 J	0.27	0.072	0.31	0.36	0.53	1.1
Benzaldehyde	mg/kg	120,000	0.075 U	0.072 U	0.74 U	0.071 U	0.74 U	0.73 U	0.7 U	0.07 U	0.072 U	0.073 U	0.072 U	0.71 U
Benzo[a]pyrene	mg/kg	2.1	1.6	0.19	1.1	1.7	2	0.051 J	0.39	0.055 J	0.35	0.29	0.48	0.98
Benzo[b]fluoranthene	mg/kg	21	1.8	0.22	1.3	2.7	5.2	0.075	0.69	0.14	0.48	0.43	0.67	1.3
Benzo[g,h,i]perylene	mg/kg		1.2	0.15	0.68	1.2	1.8	0.045 J	0.22	0.041 J	0.19	0.12	0.2	0.38
Benzo[k]fluoranthene	mg/kg	210	0.55	0.086	0.41	0.66	4	0.058 J	0.54	0.11	0.16	0.11	0.22	0.42
bis(2-Ethylhexyl)phthalate	mg/kg	160	0.048 J	0.045 J	0.74 U	0.059 B	0.74 U	0.73 U	0.7 U	0.033 J	0.052 B	0.089	0.05 B	0.71 U
Caprolactam	mg/kg	400,000	0.033 J	0.033 J	1.9 U	0.18 U	1.9 U	1.8 U	1.8 U	0.18 U	0.18 U	0.18 U	0.18 U	1.8 U
Carbazole	mg/kg		0.075 U	0.025 J	0.74 U	0.12	0.26 J	0.73 U	0.7 U	0.07 U	0.031 J	0.073 U	0.036 J	0.22 J
Chrysene	mg/kg	2,100	0.8	0.12	0.7	1.9	1.8	0.084	0.26	0.087	0.27	0.29	0.46	0.91
Dibenz[a,h]anthracene	mg/kg	2.1	0.33	0.045	0.18	0.26	0.59	0.074 U	0.076	0.016 J	0.059	0.043	0.072	0.14
Diethylphthalate	mg/kg	660,000	0.075 U	0.072 U	0.74 U	0.017 B	0.74 U	0.73 U	0.7 U	0.07 U	0.072 U	0.022 B	0.072 U	0.71 U
Di-n-butylphthalate	mg/kg	82,000	0.048 J	0.053 J	0.19 B	0.19	0.74 U	0.73 U	0.7 U	0.05 J	0.13 B	0.24	0.13 B	0.17 B
Di-n-ocytlphthalate	mg/kg	8,200	0.075 U	0.072 U	0.74 U	0.034 J	0.74 U	0.73 U	0.7 U	0.07 U	0.072 U	0.073 U	0.072 U	0.71 U
Fluoranthene	mg/kg	30,000	0.38	0.18	1.1	3.1	2.3	0.056 J	0.35	0.23	0.48	0.69	0.8	2
Fluorene	mg/kg	30,000	0.0043 J	0.0053 J	0.024	0.045	0.082	0.024 J	0.071 U	0.071 U	0.01	0.018	0.013	0.084
Indeno[1,2,3-c,d]pyrene	mg/kg	21	1	0.13	0.99	1.5	1.7	0.021 J	0.21	0.04 J	0.24	0.16	0.27	0.51
Naphthalene	mg/kg	8.6	0.02	2.1	0.3	0.22	0.36	0.018 J	0.045 J	0.094	0.044	0.018	0.042	0.054
Phenanthrene	mg/kg		0.067	0.26	0.39	1.2	0.94	0.15	0.13	0.25	0.25	0.39	0.38	1.2
Pyrene	mg/kg	23,000	0.48	0.15	1	3	2.2	0.19	0.32	0.16	0.41	0.52	0.69	1.6
PCBs	1	1	T		1	1	1	1	1		T		T	1
Aroclor 1242	mg/kg	0.97	0.018 U	N/A	0.019 U	N/A	0.018 U	N/A	0.018 U	N/A	0.018 U	0.018 U	0.018 U	N/A
Aroclor 1248	mg/kg	0.94	0.018 U	N/A	0.019 U	N/A	0.018 U	N/A	0.018 U	N/A	0.018 U	0.018 U	0.018 U	N/A
Aroclor 1254	mg/kg	0.97	0.018 U	N/A	0.019 U	N/A	0.018 U	N/A	0.018 U	N/A	0.14	0.018 U	0.093	N/A
Aroclor 1260	mg/kg	0.99	0.019	N/A	0.082 J	N/A	0.25	N/A	0.031	N/A	0.12	0.0078 J	0.093	N/A
Aroclor 1268	mg/kg		0.018 U	N/A	0.019 U	N/A	0.018 U	N/A	0.018 U	N/A	0.018 U	0.018 U	0.018 U	N/A
PCBs (total)	mg/kg	0.97	0.17 U	N/A	0.082 J	N/A	0.25	N/A	0.16 U	N/A	0.26	0.16 U	0.19	N/A
TPH/Oil & Grease	1	1											T	
Diesel Range Organics	mg/kg	6,200	56.6	33.4	84.8 J	529 J	127	575	37	49.1	40.9 J	38.2 J	51.7 J	69.2 J
Gasoline Range Organics	mg/kg	6,200	12.6 U	9.9 U	12.7 UJ	10.7 UJ	17.4 U	9.8 U	11.4 U	13 U	12.7 UJ	9 UJ	12.6 UJ	11.8 UJ
Oil & Grease	mg/kg	6,200	103 J	49.2 J	171 J-	912 J-	214	1,130	196	127	72.2 J-	110 UJ	245 J-	202 J-

Detections in bold

Values in red indicate exceedances of the Project Action Limit (PAL)

*Indicates non-validated data

^PAH compounds were analyzed via SIM

N/A indicates that the parameter was not analyzed for this sample

U: This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit. UJ: This analyte was not detected in the sample. The acutla quantitation/detection limit may be higher than reported. B: The analyte was not detected substantially above the level of the associated method blank or field blank. J: The positive result reported for this analyte is a quantitative estimate.

J-: The positive result reported for this analyte is a quantitative estimate but may be biased low.

Page 1 of 7

Parameter	Unite	DAT	B24-007-SB-1*	B24-007-SB-5*	B24-008-SB-1	B24-008-SB-5	B24-009-SB-1.5	B24-009-SB-5	B24-010-SB-1	B24-010-SB-5	B24-011-SB-1	B24-011-SB-4	B24-012-SB-1	B24-012-SB-8
Farallieter	Units	FAL	4/21/2020	4/21/2020	4/20/2020	4/20/2020	4/20/2020	4/20/2020	4/20/2020	4/20/2020	4/20/2020	4/20/2020	4/20/2020	4/20/2020
Volatile Organic Compounds														
2-Butanone (MEK)	mg/kg	190,000	N/A	N/A	N/A	N/A	0.014 U	N/A	N/A	N/A	N/A	0.01 U	N/A	0.011 U
Acetone	mg/kg	670,000	N/A	N/A	N/A	N/A	0.014 B	N/A	N/A	N/A	N/A	0.0035 B	N/A	0.012 B
Benzene	mg/kg	5.1	N/A	N/A	N/A	N/A	0.0068 U	N/A	N/A	N/A	N/A	0.005 U	N/A	0.0053 U
Carbon disulfide	mg/kg	3,500	N/A	N/A	N/A	N/A	0.0023 J	N/A	N/A	N/A	N/A	0.005 U	N/A	0.0042 J
Cyclohexane	mg/kg	27,000	N/A	N/A	N/A	N/A	0.014 U	N/A	N/A	N/A	N/A	0.01 U	N/A	0.011 U
Ethylbenzene	mg/kg	25	N/A	N/A	N/A	N/A	0.0068 U	N/A	N/A	N/A	N/A	0.005 U	N/A	0.0053 U
Toluene	mg/kg	47,000	N/A	N/A	N/A	N/A	0.0068 U	N/A	N/A	N/A	N/A	0.005 U	N/A	0.0053 U
Semi-Volatile Organic Compoun	ds^													
1,1-Biphenyl	mg/kg	200	0.11	0.26	0.38 J	0.63 J	0.73 U	0.77 U	0.72 U	0.076 U	0.71 U	0.74 U	0.73 U	0.81 U
2-Methylnaphthalene	mg/kg	3,000	0.075	0.2	0.066	0.1	0.027 J	0.021	0.081 U	0.0032 J	0.024	0.027	0.013	0.048
3,3'-Dichlorobenzidine	mg/kg	5.1	0.071 U	0.072 U	0.72 UJ	0.72 UJ	0.73 UJ	0.77 UJ	0.72 UJ	0.076 UJ	0.71 UJ	0.74 UJ	0.73 UJ	0.81 UJ
Acenaphthene	mg/kg	45,000	0.065	0.33	0.041	0.063	0.018 J	0.0088 U	0.081 U	0.0026 J	0.012	0.022	0.0042 J	0.034
Acenaphthylene	mg/kg	45,000	0.14	0.44	0.038	0.068	0.01 J	0.0054 J	0.081 U	0.024	0.071	0.11	0.034	0.19
Acetophenone	mg/kg	120,000	0.071 U	0.019 J	0.72 U	0.72 U	0.73 U	0.77 U	0.72 U	0.076 U	0.71 U	0.74 U	0.73 U	0.81 U
Anthracene	mg/kg	230,000	0.28	1.3	0.05	0.08	0.035	0.011	0.081 U	0.026	0.048	0.13	0.025	0.17
Benz[a]anthracene	mg/kg	21	1.4	4.5	0.23	0.35	0.21	0.04	0.081 U	0.19	0.25	0.62	0.14	0.42 J
Benzaldehyde	mg/kg	120,000	0.071 U	0.018 J	0.72 U	0.72 U	0.73 U	0.77 U	0.72 U	0.076 U	0.71 U	0.74 U	0.73 U	0.81 U
Benzo[a]pyrene	mg/kg	2.1	1.4	3.7	0.3	0.51	0.22	0.038	0.081 U	0.2	0.36	0.6	0.16	0.4 J
Benzo[b]fluoranthene	mg/kg	21	2	5.4	0.38	0.65	0.34	0.05	0.081 U	0.25	0.41	0.78	0.2	0.49 J
Benzo[g,h,i]perylene	mg/kg		0.96	2.4	0.22	0.45	0.12	0.018	0.2	0.051	0.27	0.38	0.14	0.24
Benzo[k]fluoranthene	mg/kg	210	0.48	1.5	0.11	0.18	0.12	0.019	0.081 U	0.096	0.16	0.26	0.06	0.13
bis(2-Ethylhexyl)phthalate	mg/kg	160	0.035 J	0.034 J	0.72 U	0.72 U	0.16 B	0.77 U	0.72 UJ	0.036 B	0.71 U	0.74 U	0.73 U	0.81 U
Caprolactam	mg/kg	400,000	0.18 U	0.031 J	1.8 U	1.8 U	1.8 U	1.9 U	1.8 U	0.19 U	1.8 U	1.9 U	1.8 U	2 U
Carbazole	mg/kg		0.08	0.34	0.72 U	0.72 U	0.73 U	0.32 J	0.72 U	0.076 U	0.71 U	0.74 U	0.73 U	0.81 U
Chrysene	mg/kg	2,100	1.2	3.6	0.2	0.3	0.21	0.038	0.081 U	0.15	0.23	0.51	0.13	0.33 J
Dibenz[a,h]anthracene	mg/kg	2.1	0.26	0.54	0.066	0.13	0.028 J	0.0044 J	0.081 U	0.019	0.07	0.12	0.041	0.076
Diethylphthalate	mg/kg	660,000	0.071 U	0.019 J	0.72 U	0.72 U	0.73 U	0.77 U	0.72 U	0.076 U	0.71 U	0.74 U	0.73 U	0.81 U
Di-n-butylphthalate	mg/kg	82,000	0.079	0.078 B	0.72 U	0.72 U	0.73 U	0.77 U	0.72 U	0.087 B	0.71 U	0.74 U	0.73 U	0.81 U
D1-n-ocytlphthalate	mg/kg	8,200	0.071 U	0.072 U	0.72 U	0.72 U	0.73 UJ	0.77 U	0.72 UJ	0.076 U	0.71 UJ	0.74 UJ	0.73 U	0.81 U
Fluoranthene	mg/kg	30,000	1.6	6.5	0.33	0.42	0.44	0.072	0.0094 J	0.17	0.32	0.93	0.18	1.1
Fluorene	mg/kg	30,000	0.043	0.28	0.015	0.024	0.0054 J	0.0023 J	0.081 U	0.003 J	0.0074 J	0.03	0.0044 J	0.11
Indeno[1,2,3-c,d]pyrene	mg/kg	21	1.1	2.8	0.26	0.51	0.14	0.02	0.14	0.078	0.31	0.52	0.16	0.3
Naphthalene	mg/kg	8.6	0.21	0.56	0.38	0.62	0.12	0.025	0.081 U	0.013	0.061	0.074	0.037	0.32
Phenanthrene	mg/kg	22.000	0.64	4.4	0.18	0.25	0.23	0.052	0.081 U	0.044	0.14	0.41	0.07	0.57 J
Pyrene	mg/kg	23,000	1.4	0.2	0.32	0.39	0.33	0.064	0.01 J	0.14	0.28	0.77	0.16	0.62 J
PCBs	4	0.07	0.052 3	27/4	0.010.11	27/4	0.10.11	27/4	0.10.11		0.000 II	27/4	0.010.11	
Aroclor 1242	mg/kg	0.97	0.053 J	N/A	0.018 U	N/A	0.18 U	N/A	0.18 U	N/A	0.088 U	N/A	0.018 U	N/A
Aroclor 1248	mg/kg	0.94	0.089 U	N/A	0.018 U	N/A	0.18 U	N/A	0.18 U	N/A	0.088 U	N/A	0.018 U	N/A
Aroclor 1254	mg/kg	0.97	0.089 U	N/A	0.067 J	N/A	0.16 J	N/A	0.18 U	N/A	0.096	N/A	0.019 J	N/A
Aroclor 1260	mg/kg	0.99	U.U78 J	N/A	0.07 J	N/A	0.098 U	N/A	0.18 U	N/A	0.083 U	N/A	0.018 U	N/A
Aroclor 1268	mg/kg	0.05	0.089 U	N/A	0.018 U	N/A	0.18 U	N/A	0.18 U	N/A	0.088 U	N/A	0.018 U	N/A
PUBS (total)	mg/kg	0.97	0.8 U	N/A	0.14 J	N/A	1.6 U	N/A	I./ U	N/A	0.79 U	N/A	0.17 U	N/A
Direct Deriver On		(200		42.4	110 7	000	202	002	201	25.2	110 7	121	00	102 3
Diesel Range Organics	mg/kg	6,200	77 .1	434	119J	228	523	203	386	27.2	119 J	131	88	103 J
Gasoline Kange Organics	mg/kg	6,200	13 U	10.7 U	11.8 UJ	9.8 UJ	12.4 U	11./U	12.7 U	110 1	13.1 UJ	11./ UJ	11.9 UJ	11.1 UJ
Uil & Grease	mg/kg	6,200	263	1,120	845 J-	844 J-	9/6 J-	514 J-	5,830 J-	118 J-	1,460 J-	1,590 J-	419 J-	730 J-

Detections in bold

Values in red indicate exceedances of the Project Action Limit (PAL)

*Indicates non-validated data

^PAH compounds were analyzed via SIM

N/A indicates that the parameter was not analyzed for this sample

U: This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit. UJ: This analyte was not detected in the sample. The acutla quantitation/detection limit may be higher than reported. B: The analyte was not detected substantially above the level of the associated method blank or field blank. J: The positive result reported for this analyte is a quantitative estimate.

J-: The positive result reported for this analyte is a quantitative estimate but may be biased low.

Page 2 of 7

Doromatar	Unite	DAI	B24-013-SB-1*	B24-013-SB-5*	B24-014-SB-1*	B24-014-SB-5*	B24-015-SB-1*	B24-016-SB-1*	B24-016-SB-5*	B24-017-SB-1	B24-017-SB-5	B24-018-SB-1	B24-018-SB-5	B24-019-SB-1
Faranieter	Units	FAL	4/14/2020	4/14/2020	4/14/2020	4/14/2020	4/16/2020	4/16/2020	4/16/2020	4/20/2020	4/20/2020	4/17/2020	4/17/2020	4/20/2020
Volatile Organic Compounds														
2-Butanone (MEK)	mg/kg	190,000	N/A	N/A	N/A	N/A	N/A	N/A						
Acetone	mg/kg	670,000	N/A	N/A	N/A	N/A	N/A	N/A						
Benzene	mg/kg	5.1	N/A	N/A	N/A	N/A	N/A	N/A						
Carbon disulfide	mg/kg	3,500	N/A	N/A	N/A	N/A	N/A	N/A						
Cyclohexane	mg/kg	27,000	N/A	N/A	N/A	N/A	N/A	N/A						
Ethylbenzene	mg/kg	25	N/A	N/A	N/A	N/A	N/A	N/A						
Toluene	mg/kg	47,000	N/A	N/A	N/A	N/A	N/A	N/A						
Semi-Volatile Organic Compoun	ds^													
1,1-Biphenyl	mg/kg	200	0.76 U	0.071 U	0.72 U	0.07 U	0.72 U	0.045 J	0.058 J	0.72 U	0.73 U	0.7 U	0.073 U	0.072 U
2-Methylnaphthalene	mg/kg	3,000	0.0075 U	0.045	0.0038 J	0.0041 J	0.065 J	0.12	0.34	0.012	0.008 U	0.04	0.013	0.034
3,3'-Dichlorobenzidine	mg/kg	5.1	0.76 U	0.071 U	0.72 U	0.07 U	0.72 U	0.07 U	0.069 U	0.72 UJ	0.73 UJ	0.7 UJ	0.073 UJ	0.072 UJ
Acenaphthene	mg/kg	45,000	0.00087 J	0.0032 J	0.0073 U	0.0014 J	0.07 J	0.11	0.024 J	0.016	0.0084	0.095	0.039	0.012
Acenaphthylene	mg/kg	45,000	0.0075 U	0.0015 J	0.0073 U	0.0017 J	0.055 J	0.075	0.021 J	0.0074 J	0.0019 J	0.056	0.0074	0.0083
Acetophenone	mg/kg	120,000	0.76 U	0.071 U	0.72 U	0.07 U	0.72 U	0.07 U	0.061 J	0.72 U	0.73 U	0.7 U	0.073 U	0.072 U
Anthracene	mg/kg	230,000	0.00072 J	0.0034 J	0.0073 U	0.0041 J	0.11	0.17	0.077	0.015	0.0071 J	0.093	0.039	0.018
Benz[a]anthracene	mg/kg	21	0.0055 J	0.019	0.0013 J	0.039	0.67	1.3	0.34	0.19	0.096	0.72	0.24	0.18
Benzaldehyde	mg/kg	120,000	0.76 U	0.071 U	0.72 U	0.07 U	0.72 U	0.07 U	0.033 J	0.72 U	0.73 U	0.7 U	0.073 U	0.072 U
Benzo[a]pyrene	mg/kg	2.1	0.0096	0.022	0.0014 J	0.049	1.2	2.3	0.44	0.4	0.24	1.2	0.35	0.29
Benzo[b]fluoranthene	mg/kg	21	0.011	0.032	0.0031 J	0.071	1.9	3.8	0.86	0.56	0.35	1.4	0.41	0.34
Benzo[g,h,i]perylene	mg/kg		0.0091	0.022	0.0022 J	0.033	0.79	1.6	0.3	0.2	0.3	0.64	0.19	0.21
Benzo[k]fluoranthene	mg/kg	210	0.0045 J	0.011	0.0073 U	0.025	1.5	2.9	0.67	0.23	0.1	0.39	0.13	0.098
bis(2-Ethylhexyl)phthalate	mg/kg	160	0.76 U	0.08	0.72 U	1	0.72 U	0.041 J	0.05 J	0.72 U	0.73 U	0.7 U	0.022 B	0.079
Caprolactam	mg/kg	400,000	1.9 U	0.026 J	1.8 U	0.025 J	1.8 U	0.18 U	0.17 U	1.8 U	1.8 U	1.8 U	0.18 U	0.18 U
Carbazole	mg/kg		0.76 U	0.071 U	0.72 U	0.07 U	0.24 J	0.099	0.039 J	0.72 U	0.73 U	0.7 U	0.025 J	0.018 J
Chrysene	mg/kg	2,100	0.0089	0.024	0.0051 J	0.046	0.64	1.2	0.39	0.23	0.095	0.64	0.2	0.17
Dibenz[a,h]anthracene	mg/kg	2.1	0.0019 J	0.0054 J	0.0073 U	0.0093	0.24	0.49	0.11	0.061	0.082	0.18	0.052	0.054
Diethylphthalate	mg/kg	660,000	0.76 U	0.017 J	0.72 U	0.018 J	0.72 U	0.07 U	0.018 J	0.72 U	0.73 U	0.7 U	0.073 U	0.02 J
Di-n-butylphthalate	mg/kg	82,000	0.76 U	0.082	0.72 U	0.097	0.72 U	0.059 J	0.087	0.72 U	0.73 U	0.7 U	0.073 U	0.13
Di-n-ocytlphthalate	mg/kg	8,200	0.76 U	0.071 U	0.72 U	0.07 U	0.72 U	0.07 U	0.069 U	0.72 U	0.73 U	0.7 U	0.073 UJ	0.072 U
Fluoranthene	mg/kg	30,000	0.0062 J	0.036	0.0025 J	0.048	0.78	1.5	0.37	0.27	0.095	0.91	0.36	0.18
Fluorene	mg/kg	30,000	0.0075 U	0.0032 J	0.0073 U	0.00077 J	0.023 J	0.034 J	0.016 J	0.0013 J	0.0016 J	0.024	0.0092	0.0046 J
Indeno[1,2,3-c,d]pyrene	mg/kg	21	0.0065 J	0.015	0.0073 U	0.027	0.77	1.6	0.29	0.26	0.36	1.1	0.23	0.24
Naphthalene	mg/kg	8.6	0.0075 U	0.03	0.0073 U	0.0071 U	0.17	0.26	0.34	0.032	0.0023 J	0.16	0.026	0.063
Phenanthrene	mg/kg		0.004 J	0.026	0.0044 J	0.017	0.36	0.57	0.39	0.11	0.029	0.33	0.2	0.098
Pyrene	mg/kg	23,000	0.0071 J	0.039	0.0035 J	0.051	0.73	1.4	0.64	0.23	0.094	0.88	0.29	0.18
PCBs		1	-		r					r			•	•
Aroclor 1242	mg/kg	0.97	0.019 U	N/A	0.018 U	N/A	0.089 U	0.017 U	N/A	0.018 U	N/A	0.089 U	N/A	0.018 U
Aroclor 1248	mg/kg	0.94	0.019 U	N/A	0.018 U	N/A	0.089 U	0.017 U	N/A	0.018 U	N/A	0.089 U	N/A	0.018 U
Aroclor 1254	mg/kg	0.97	0.019 U	N/A	0.018 U	N/A	0.089 U	0.017 U	N/A	0.08	N/A	0.089 U	N/A	0.017 U
Aroclor 1260	mg/kg	0.99	0.019 U	N/A	0.018 U	N/A	0.089 U	0.095	N/A	0.076	N/A	0.053 J	N/A	0.017 J
Aroclor 1268	mg/kg		0.019 U	N/A	0.018 U	N/A	0.54	0.017 U	N/A	0.018 U	N/A	0.089 U	N/A	0.018 U
PCBs (total)	mg/kg	0.97	0.17 U	N/A	0.16 U	N/A	0.54 J	0.095 J	N/A	0.16 J	N/A	0.8 U	N/A	0.16 U
TPH/Oil & Grease														
Diesel Range Organics	mg/kg	6,200	18.5	29.9	29.9	22.1	67.1	75.9	64	166	17.6 J	43.9 J	44.4 J	54.8 J
Gasoline Range Organics	mg/kg	6,200	19.8	12.2 U	13.3 U	9 J	11 U	11.6 U	12.1	10.7 U	12.2 U	9.6 UJ	10 UJ	11.2 U
Oil & Grease	mg/kg	6,200	175	129	180	58.7 J	217	168	241	527 J-	119 J-	200 J-	94.2 J-	926 J-

Detections in bold

Values in red indicate exceedances of the Project Action Limit (PAL)

*Indicates non-validated data

^PAH compounds were analyzed via SIM

N/A indicates that the parameter was not analyzed for this sample

U: This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit. UJ: This analyte was not detected in the sample. The acutla quantitation/detection limit may be higher than reported. B: The analyte was not detected substantially above the level of the associated method blank or field blank. J: The positive result reported for this analyte is a quantitative estimate.

J-: The positive result reported for this analyte is a quantitative estimate but may be biased low.

Page 3 of 7

Domomotor	Unita	DAI	B24-019-SB-5	B24-020-SB-1	B24-020-SB-8	B24-021-SB-1*	B24-021-SB-5*	B24-022-SB-1*	B24-022-SB-5*	B24-023-SB-1*	B24-023-SB-5*	B24-024-SB-1*	B24-024-SB-5*	B24-025-SB-1*
Parameter	Units	PAL	4/20/2020	4/17/2020	4/17/2020	4/21/2020	4/21/2020	4/21/2020	4/21/2020	4/21/2020	4/21/2020	4/21/2020	4/21/2020	4/14/2020
Volatile Organic Compounds														
2-Butanone (MEK)	mg/kg	190,000	N/A	N/A	0.0088 UJ	N/A								
Acetone	mg/kg	670,000	N/A	N/A	0.0071 B	N/A								
Benzene	mg/kg	5.1	N/A	N/A	0.0044 U	N/A								
Carbon disulfide	mg/kg	3,500	N/A	N/A	0.0044 U	N/A								
Cyclohexane	mg/kg	27,000	N/A	N/A	0.0088 U	N/A								
Ethylbenzene	mg/kg	25	N/A	N/A	0.0044 U	N/A								
Toluene	mg/kg	47,000	N/A	N/A	0.0044 U	N/A								
Semi-Volatile Organic Compound	ds^													
1,1-Biphenyl	mg/kg	200	0.72 U	0.71 U	0.069 U	0.71 U	0.14	0.076	0.13	0.027 J	0.11	0.022 J	0.07 U	0.74 U
2-Methylnaphthalene	mg/kg	3,000	0.14	0.023	0.0069 U	0.096	0.1	0.098	0.088	0.23	0.22	0.059	0.033	0.029
3,3'-Dichlorobenzidine	mg/kg	5.1	0.72 UJ	0.71 UJ	0.069 UJ	0.71 U	0.071 U	0.072 U	0.072 U	0.069 U	0.075 U	0.072 U	0.07 U	0.74 U
Acenaphthene	mg/kg	45,000	0.019	0.022	0.0069 U	0.11	0.049	0.09	0.075	0.025	0.026	0.049	0.0048 J	0.012
Acenaphthylene	mg/kg	45,000	0.017	0.077	0.0069 U	0.19	0.12	0.15	0.061	0.045	0.09	0.066	0.012	0.18
Acetophenone	mg/kg	120,000	0.72 U	0.71 U	0.069 U	0.71 U	0.071 U	0.072 U	0.072 U	0.069 U	0.075 U	0.072 U	0.07 U	0.74 U
Anthracene	mg/kg	230,000	0.068	0.14	0.00055 J	0.18	0.1	0.28	0.098	0.029	0.077	0.093	0.026	0.24
Benz[a]anthracene	mg/kg	21	0.48	0.45	0.0023 J	1.5	0.42	2.4	0.5	0.21	0.38	0.33	0.13	1.7
Benzaldehyde	mg/kg	120,000	0.72 U	0.71 U	0.069 U	0.71 U	0.071 U	0.072 U	0.016 J	0.069 U	0.017 J	0.072 U	0.07 U	0.74 U
Benzo[a]pyrene	mg/kg	2.1	0.67	0.42	0.0053 B	1.2	0.56	2.3	0.86	0.35	0.47	0.44	0.11	1.6
Benzo[b]fluoranthene	mg/kg	21	0.83	0.74	0.0076 J	1.6	0.64	3.6	1	0.44	0.68	0.52	0.18	2.4
Benzo[g,h,i]perylene	mg/kg		0.48	0.33	0.0069	0.92	0.39	1.7	0.83	0.26	0.4	0.41	0.067	0.77
Benzo[k]fluoranthene	mg/kg	210	0.24	0.24	0.0021 B	0.44	0.22	0.99	0.34	0.11	0.2	0.2	0.057	1
bis(2-Ethylhexyl)phthalate	mg/kg	160	0.72 U	0.71 U	0.069 U	0.71 U	0.025 J	0.031 J	0.022 J	0.13	0.037 J	0.022 J	0.021 J	0.74 U
Caprolactam	mg/kg	400,000	1.8 U	1.8 U	0.17 U	1.8 U	0.18 U	0.023 J	0.023 J	0.032 J	0.03 J	0.18 U	0.023 J	1.9 U
Carbazole	mg/kg		0.72 U	0.71 U	0.069 U	0.71 U	0.058 J	0.14	0.062 J	0.022 J	0.044 J	0.072 U	0.02 J	0.74 U
Chrysene	mg/kg	2,100	0.52	0.46	0.0024 J	0.91	0.4	2	0.47	0.2	0.42	0.34	0.13	1.8
Dibenz[a,h]anthracene	mg/kg	2.1	0.15	0.092	0.002 J	0.24	0.12	0.47	0.21	0.076	0.12	0.11	0.023	0.36
Diethylphthalate	mg/kg	660,000	0.72 U	0.71 U	0.069 U	0.71 U	0.071 U	0.072 U	0.072 U	0.021 J	0.016 J	0.072 U	0.07 U	0.74 U
Di-n-butylphthalate	mg/kg	82,000	0.72 U	0.71 U	0.069 U	0.71 U	0.062 B	0.066 B	0.057 B	0.065 B	0.058 B	0.041 B	0.065 B	0.74 U
Di-n-ocytlphthalate	mg/kg	8,200	0.72 U	0.71 U	0.069 U	0.71 U	0.071 U	0.072 U	0.072 U	0.069 U	0.093	0.072 U	0.026 J	0.74 U
Fluoranthene	mg/kg	30,000	0.49	1.2	0.0036 J	1.1	0.46	2.4	0.63	0.21	0.46	0.52	0.21	1.9
Fluorene	mg/kg	30,000	0.0077 J	0.014	0.0069 U	0.03	0.027	0.046	0.027	0.015	0.02	0.021	0.0039 J	0.017
Indeno[1,2,3-c,d]pyrene	mg/kg	21	0.53	0.39	0.0075 J	1	0.49	2	0.84	0.31	0.46	0.44	0.082	0.86
Naphthalene	mg/kg	8.6	0.14	0.038	0.0019 J	0.29	0.47	0.36	0.29	0.54	0.71	0.23	0.057	0.02
Phenanthrene	mg/kg		0.31	0.25	0.0025 J	0.6	0.3	0.85	0.37	0.11	0.23	0.32	0.085	0.66
Pyrene	mg/kg	23,000	0.61	0.94	0.0029 J	0.93	0.5	3	0.54	0.21	0.64	0.5	0.19	2.1
PCBs				1		T	T	1	T		1	1	1	T
Aroclor 1242	mg/kg	0.97	N/A	0.09 U	N/A	0.17 U	N/A	0.091 U	N/A	0.088 U	N/A	0.09 U	N/A	0.018 U
Aroclor 1248	mg/kg	0.94	N/A	0.09 U	N/A	0.17 U	N/A	0.064 J	N/A	0.058 J	N/A	0.09 U	N/A	0.018 U
Aroclor 1254	mg/kg	0.97	N/A	0.16	N/A	0.12 J	N/A	0.2	N/A	0.075 J	N/A	0.09 U	N/A	0.018 U
Aroclor 1260	mg/kg	0.99	N/A	0.097	N/A	0.094 J	N/A	0.13	N/A	0.062 J	N/A	0.09 U	N/A	0.018 U
Aroclor 1268	mg/kg		N/A	0.09 U	N/A	0.17 U	N/A	0.091 U	N/A	0.088 U	N/A	0.09 U	N/A	0.018 U
PCBs (total)	mg/kg	0.97	N/A	0.26 J	N/A	1.6 U	N/A	0.39 J	N/A	0.79 U	N/A	0.81 U	N/A	0.16 U
TPH/Oil & Grease									-					
Diesel Range Organics	mg/kg	6,200	237	89.7 J	8.3 J	137	101	234	138	75.1	302	38.3	101	112
Gasoline Range Organics	mg/kg	6,200	9.8 U	9.6 UJ	10.6 UJ	10.1 U	7.9 U	10.7 U	11.7 U	11.1 U	11.6 U	10.9 U	11.1 J	10.8 U
Oil & Grease	mg/kg	6,200	343 J-	468 J-	42.1 J-	933	171	387	161	245	1,110	195	260	361

Detections in bold

Values in red indicate exceedances of the Project Action Limit (PAL)

*Indicates non-validated data

^PAH compounds were analyzed via SIM

N/A indicates that the parameter was not analyzed for this sample

U: This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit. UJ: This analyte was not detected in the sample. The acutla quantitation/detection limit may be higher than reported. B: The analyte was not detected substantially above the level of the associated method blank or field blank. J: The positive result reported for this analyte is a quantitative estimate.

J-: The positive result reported for this analyte is a quantitative estimate but may be biased low.

Page 4 of 7

Dorometer	Unite	DAI	B24-025-SB-5*	B24-025-SB-10*	B24-025-SB-15*	B24-026-SB-1*	B24-026-SB-5*	B24-026-SB-10*	B24-026-SB-16*	B24-027-SB-1*	B24-027-SB-5*	B24-028-SB-1*	B24-028-SB-5*	B24-029-SB-1
Falameter	Ullits	FAL	4/14/2020	4/14/2020	4/15/2020	4/14/2020	4/14/2020	4/14/2020	4/14/2020	4/16/2020	4/16/2020	4/21/2020	4/21/2020	4/20/2020
Volatile Organic Compounds														
2-Butanone (MEK)	mg/kg	190,000	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Acetone	mg/kg	670,000	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Benzene	mg/kg	5.1	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Carbon disulfide	mg/kg	3,500	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Cyclohexane	mg/kg	27,000	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Ethylbenzene	mg/kg	25	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Toluene	mg/kg	47,000	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Semi-Volatile Organic Compoun	ds^													
1,1-Biphenyl	mg/kg	200	0.073 U	0.077 U	0.076 U	0.073 U	0.079 U	0.079 U	0.072 U	0.7 U	2.1	0.21	0.047 J	0.75 U
2-Methylnaphthalene	mg/kg	3,000	0.013	0.006 J	0.077 U	0.062	0.028	0.014	0.0073 U	0.041 J	0.14	0.15	0.28	0.031
3,3'-Dichlorobenzidine	mg/kg	5.1	0.073 U	0.077 U	0.076 U	0.073 U	0.079 U	0.079 U	0.072 U	0.7 U	0.71 U	0.073 U	0.073 U	0.75 UJ
Acenaphthene	mg/kg	45,000	0.0025 J	0.0018 J	0.0069 J	0.012	0.0066 J	0.0048 J	0.00093 J	0.057 J	0.23	0.1	0.13	0.12
Acenaphthylene	mg/kg	45,000	0.017	0.012	0.0076 J	0.063	0.082	0.045	0.0029 J	0.06 J	0.035 J	0.14	0.11	0.051
Acetophenone	mg/kg	120,000	0.073 U	0.077 U	0.076 U	0.073 U	0.079 U	0.079 U	0.072 U	0.7 U	0.71 U	0.073 U	0.02 J	0.75 U
Anthracene	mg/kg	230,000	0.054	0.013	0.025 J	0.098	0.14	0.073	0.0052 J	0.12	0.23	0.14	0.33	0.26
Benz[a]anthracene	mg/kg	21	0.088	0.087	0.074 J	0.39	0.95	0.33	0.019	0.44	1.3	0.69	1.2	1.5
Benzaldehyde	mg/kg	120,000	0.073 U	0.077 U	0.076 U	0.073 U	0.079 U	0.079 U	0.072 U	0.7 U	0.71 U	0.073 U	0.018 J	0.75 U
Benzo[a]pyrene	mg/kg	2.1	0.087	0.084	0.057 J	0.39	0.79	0.28	0.016	0.72	2.5	0.82	1.1	1.4
Benzo[b]fluoranthene	mg/kg	21	0.16	0.15	0.14	0.66	1.5	0.51	0.032	1.4	3.9	1.1	1.4	2.1
Benzo[g,h,i]perylene	mg/kg		0.067	0.05	0.044 J	0.21	0.43	0.13	0.0081	0.2	1.5	0.6	0.79	1
Benzo[k]fluoranthene	mg/kg	210	0.061	0.052	0.11	0.25	0.53	0.17	0.0089	1.1	3	0.33	0.51	0.51
bis(2-Ethylhexyl)phthalate	mg/kg	160	0.1	0.07 J	0.076 U	0.063 J	0.04 J	0.047 J	0.077	0.7 U	0.71 U	0.028 J	0.028 J	0.75 U
Caprolactam	mg/kg	400,000	0.029 J	0.028 J	0.19 U	0.18 U	0.2 U	0.2 U	0.035 J	1.8 U	1.8 U	0.18 U	0.028 J	1.9 U
Carbazole	mg/kg		0.021 J	0.077 U	0.035 J	0.15	0.12	0.044 J	0.072 U	0.7 U	0.71 U	0.072 J	0.065 J	0.75 U
Chrysene	mg/kg	2,100	0.11	0.1	0.078	0.39	0.96	0.35	0.021	0.42	1.2	0.62	0.92	1.3
Dibenz[a,h]anthracene	mg/kg	2.1	0.024	0.02	0.077 U	0.087	0.2	0.06	0.0036 J	0.086	0.46	0.18	0.21	0.3
Diethylphthalate	mg/kg	660,000	0.02 J	0.016 J	0.076 U	0.073 U	0.079 U	0.079 U	0.02 J	0.7 U	0.71 U	0.073 U	0.073 U	0.75 U
Di-n-butylphthalate	mg/kg	82,000	0.093	0.071 J	0.049 J	0.06 J	0.047 J	0.048 J	0.078	0.7 U	0.71 U	0.072 B	0.058 B	0.75 U
Di-n-ocytlphthalate	mg/kg	8,200	0.073 U	0.077 U	0.076 U	0.073 U	0.079 U	0.079 U	0.072 U	0.7 U	0.71 U	0.073 U	0.027 J	0.75 U
Fluoranthene	mg/kg	30,000	0.12	0.14	0.13	0.62	1.4	0.49	0.029	0.62	1.5	0.72	1.9	2.4
Fluorene	mg/kg	30,000	0.0049 J	0.0016 J	0.0099 J	0.026	0.0095	0.0099	0.00095 J	0.047 J	0.051 J	0.038	0.027 J	0.093
Indeno[1,2,3-c,d]pyrene	mg/kg	21	0.065	0.05	0.041 J	0.22	0.48	0.15	0.0093	0.23	1.5	0.72	0.91	0.84
Naphthalene	mg/kg	8.6	0.014	0.0089	0.077 U	0.058	0.051	0.02	0.0032 J	0.094	0.78	0.55	0.85	0.048
Phenanthrene	mg/kg		0.059	0.049	0.091	0.38	0.67	0.23	0.018	0.37	0.79	0.43	1.5	1
Pyrene	mg/kg	23,000	0.11	0.11	0.11	0.49	1.1	0.37	0.023	0.55	1.6	0.87	1.5	1.9
PCBs	1	T				1	1	1	-			1	T	-
Aroclor 1242	mg/kg	0.97	N/A	N/A	N/A	0.018 U	N/A	N/A	N/A	0.018 U	N/A	0.091 U	N/A	0.019 U
Aroclor 1248	mg/kg	0.94	N/A	N/A	N/A	0.018 U	N/A	N/A	N/A	0.093	N/A	0.052 J	N/A	0.019 U
Aroclor 1254	mg/kg	0.97	N/A	N/A	N/A	0.018 U	N/A	N/A	N/A	0.018 U	N/A	0.067 J	N/A	0.019 U
Aroclor 1260	mg/kg	0.99	N/A	N/A	N/A	0.018 U	N/A	N/A	N/A	0.073	N/A	0.072 J	N/A	0.048 NJ
Aroclor 1268	mg/kg		N/A	N/A	N/A	0.018 U	N/A	N/A	N/A	0.018 U	N/A	0.091 U	N/A	0.019 U
PCBs (total)	mg/kg	0.97	N/A	N/A	N/A	0.16 U	N/A	N/A	N/A	0.17	N/A	0.82 U	N/A	0.048 NJ
TPH/Oil & Grease	1	1											T	T
Diesel Range Organics	mg/kg	6,200	34.2	78	67.4	61.7	75.2	31.4	45.5	157	199	128	198	144
Gasoline Range Organics	mg/kg	6,200	11.5 U	9.3 U	9.7 U	12.4 U	10.7 U	9.7 U	11.2 U	11 U	11.8 U	13.5 U	11.8 U	13.2 UJ
Oil & Grease	mg/kg	6,200	124	283	637	156	158	105 J	98.6 J	731	676	416	487	249 J-

Detections in bold

Values in red indicate exceedances of the Project Action Limit (PAL)

*Indicates non-validated data

^PAH compounds were analyzed via SIM

N/A indicates that the parameter was not analyzed for this sample

U: This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit. UJ: This analyte was not detected in the sample. The acutla quantitation/detection limit may be higher than reported. B: The analyte was not detected substantially above the level of the associated method blank or field blank. J: The positive result reported for this analyte is a quantitative estimate.

J-: The positive result reported for this analyte is a quantitative estimate but may be biased low.

Page 5 of 7

Parameter	Units	ΡΔΙ	B24-029-SB-9	B24-030-SB-1	B24-030-SB-9	B24-031-SB-1.5	B24-031-SB-5	B24-032-SB-1*	B24-032-SB-5*	B24-032-SB-10*	B24-033-SB-1*	B24-033-SB-5*
1 arameter	Ollits	TAL	4/20/2020	4/17/2020	4/17/2020	4/17/2020	4/17/2020	4/15/2020	4/15/2020	4/15/2020	4/15/2020	4/15/2020
Volatile Organic Compounds												
2-Butanone (MEK)	mg/kg	190,000	0.011 U	N/A	0.0068 J	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Acetone	mg/kg	670,000	0.0069 B	N/A	0.011 B	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Benzene	mg/kg	5.1	0.0057 U	N/A	0.001 J	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Carbon disulfide	mg/kg	3,500	0.0057 U	N/A	0.0058 U	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Cyclohexane	mg/kg	27,000	0.011 U	N/A	0.0026 J	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Ethylbenzene	mg/kg	25	0.0057 U	N/A	0.0058 U	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Toluene	mg/kg	47,000	0.0057 U	N/A	0.002 J	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Semi-Volatile Organic Compoun	ds^											
1,1-Biphenyl	mg/kg	200	0.72 U	0.73 U	0.074 U	0.73 U	0.71 U	0.76 U	0.81 U	N/A	0.74 U	0.086 U
2-Methylnaphthalene	mg/kg	3,000	0.14	0.059	0.01	0.035 J	0.01	0.38	0.089	N/A	0.61	0.0048 J
3,3'-Dichlorobenzidine	mg/kg	5.1	0.72 UJ	0.73 UJ	0.074 UJ	0.73 UJ	0.71 UJ	0.76 U	0.81 U	N/A	0.74 U	0.086 U
Acenaphthene	mg/kg	45,000	0.024	0.056	0.0062 J	0.11	0.0071 U	0.064 J	0.082 U	N/A	0.03 J	0.0022 J
Acenaphthylene	mg/kg	45,000	0.033	0.049	0.031	0.073	0.0096	0.68	0.014 J	N/A	1.4	0.0086 U
Acetophenone	mg/kg	120,000	0.72 U	0.73 U	0.074 U	0.73 U	0.71 U	0.76 U	0.81 U	N/A	0.74 U	0.086 U
Anthracene	mg/kg	230,000	0.077	0.22	0.023	0.6	0.0057 J	0.45	0.015 J	N/A	0.85	0.0086 U
Benz[a]anthracene	mg/kg	21	0.16	2.1	0.1	3.6	0.016	1.8	0.053 J	N/A	1.7	0.002 J
Benzaldehyde	mg/kg	120,000	0.72 U	0.73 U	0.074 U	0.73 U	0.71 U	0.76 U	0.81 U	N/A	0.74 U	0.086 U
Benzo[a]pyrene	mg/kg	2.1	0.17	1.9	0.12	3.1	0.03	2.2	0.1	N/A	3.4	0.0014 J
Benzo[b]fluoranthene	mg/kg	21	0.26	2.4	0.16	5.6	0.048	4.8	0.18	N/A	8.5	0.0022 J
Benzo[g,h,i]perylene	mg/kg		0.1	1.1	0.058	1.3	0.035	1.1	0.077 J	N/A	1.4	0.0086 U
Benzo[k]fluoranthene	mg/kg	210	0.061	0.61	0.055	1.4	0.013	3.7	0.14	N/A	6.6	0.0086 U
bis(2-Ethylhexyl)phthalate	mg/kg	160	0.72 U	0.73 U	0.016 B	0.73 U	0.71 U	0.76 U	0.81 U	N/A	0.74 U	0.086 U
Caprolactam	mg/kg	400,000	1.8 U	1.8 U	0.19 U	1.8 U	1.8 U	1.9 U	2 U	N/A	1.9 U	0.045 J
Carbazole	mg/kg		0.72 U	0.73 U	0.018 J	0.73 U	0.71 U	0.76 U	0.81 U	N/A	0.74 U	0.086 U
Chrysene	mg/kg	2,100	0.17	1.6	0.096	3.1	0.02	1.8	0.13	N/A	1.9	0.0014 J
Dibenz[a,h]anthracene	mg/kg	2.1	0.034	0.23	0.019	0.46	0.0086	0.45	0.05 J	N/A	0.67	0.0086 U
Diethylphthalate	mg/kg	660,000	0.72 U	0.73 U	0.074 U	0.73 U	0.71 U	0.76 U	0.81 U	N/A	0.74 U	0.017 J
Di-n-butylphthalate	mg/kg	82,000	0.72 U	0.73 U	0.074 U	0.73 U	0.71 U	0.76 U	0.81 U	N/A	0.74 U	0.064 J
Di-n-ocytlphthalate	mg/kg	8,200	0.72 U	0.73 UJ	0.074 UJ	0.73 UJ	0.71 UJ	0.76 U	0.81 U	N/A	0.74 U	0.086 U
Fluoranthene	mg/kg	30,000	0.25	2.7	0.16	5.9	0.019	2.2	0.07 J	N/A	1.6	0.0016 J
Fluorene	mg/kg	30,000	0.035	0.044	0.0075 J	0.063	0.0071 U	0.061 J	0.082 U	N/A	0.033 J	0.0086 U
Indeno[1,2,3-c,d]pyrene	mg/kg	21	0.12	1.4	0.073	1.8	0.035	1.2	0.039 J	N/A	1.6	0.0086 U
Naphthalene	mg/kg	8.6	0.75	0.14	0.035	0.074	0.012	0.35	0.082	N/A	0.58	0.0055 J
Phenanthrene	mg/kg		0.27	1	0.086	2.2	0.016	0.84	0.094	N/A	0.9	0.0028 J
Pyrene	mg/kg	23,000	0.21	2.4	0.13	5.2	0.026	2.4	0.076 J	N/A	1.8	0.0014 J
PCBs		1										
Aroclor 1242	mg/kg	0.97	N/A	0.18 U	N/A	0.089 U	N/A	0.019 U	N/A	N/A	0.094 U	N/A
Aroclor 1248	mg/kg	0.94	N/A	0.18 U	N/A	0.089 U	N/A	0.019 U	N/A	N/A	0.094 U	N/A
Aroclor 1254	mg/kg	0.97	N/A	0.38	N/A	0.12	N/A	0.019 U	N/A	N/A	0.094 U	N/A
Aroclor 1260	mg/kg	0.99	N/A	0.21	N/A	0.12 J	N/A	0.019 U	N/A	N/A	0.094 U	N/A
Aroclor 1268	mg/kg		N/A	0.18 U	N/A	0.089 U	N/A	0.019 U	N/A	N/A	0.094 U	N/A
PCBs (total)	mg/kg	0.97	N/A	0.59 J	N/A	0.24 J	N/A	0.17 U	N/A	N/A	0.84 U	N/A
TPH/Oil & Grease									-			
Diesel Range Organics	mg/kg	6,200	238	235 J	31.6 J	211 J	25.2 J	86.7	1,010	N/A	146	8.9
Gasoline Range Organics	mg/kg	6,200	9.6 UJ	12.5 UJ	9.8 UJ	12.7 UJ	12.9 UJ	12.5 U	19.1 U	N/A	12.6 J	21.4 U
Oil & Grease	mg/kg	6,200	496 J-	2,630 J-	113 UJ	1,050 J-	731 J-	679	32,200	68.9 J	640	133 U

Detections in bold

Values in red indicate exceedances of the Project Action Limit (PAL)

*Indicates non-validated data

^PAH compounds were analyzed via SIM

N/A indicates that the parameter was not analyzed for this sample

U: This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit. UJ: This analyte was not detected in the sample. The acutla quantitation/detection limit may be higher than reported. B: The analyte was not detected substantially above the level of the associated method blank or field blank.

J: The positive result reported for this analyte is a quantitative estimate.

J-: The positive result reported for this analyte is a quantitative estimate but may be biased low.

Page 6 of 7

Parameter	Unite	ΡΔΙ	B24-034-SB-1*	B24-034-SB-5*	B24-035-SB-1*	B24-035-SB-4*	B24-036-SB-1*	B24-036-SB-8*	B24-037-SB-1*	B24-037-SB-8*	B24-037-SB-10*	B24-037-SB-12*
i arameter	Onto	TAL	4/21/2020	4/21/2020	4/15/2020	4/15/2020	4/15/2020	4/15/2020	4/16/2020	4/16/2020	4/16/2020	4/16/2020
Volatile Organic Compounds												
2-Butanone (MEK)	mg/kg	190,000	N/A	N/A	N/A	0.0099 U	N/A	0.021 U	N/A	0.02	N/A	N/A
Acetone	mg/kg	670,000	N/A	N/A	N/A	0.0045 B	N/A	0.0098 B	N/A	0.012 J	N/A	N/A
Benzene	mg/kg	5.1	N/A	N/A	N/A	0.0015 J	N/A	0.011 U	N/A	0.0024 J	N/A	N/A
Carbon disulfide	mg/kg	3,500	N/A	N/A	N/A	0.0049 U	N/A	0.011 U	N/A	0.0039 J	N/A	N/A
Cyclohexane	mg/kg	27,000	N/A	N/A	N/A	0.0099 U	N/A	0.021 U	N/A	0.013	N/A	N/A
Ethylbenzene	mg/kg	25	N/A	N/A	N/A	0.0049 U	N/A	0.011 U	N/A	0.0019 J	N/A	N/A
Toluene	mg/kg	47,000	N/A	N/A	N/A	0.0049 U	N/A	0.011 U	N/A	0.0032 J	N/A	N/A
Semi-Volatile Organic Compoun	ds^											
1,1-Biphenyl	mg/kg	200	0.75 U	0.051 J	0.71 U	0.072 U	0.73 U	0.093 U	0.72 U	0.73 U	0.71 U	0.73 U
2-Methylnaphthalene	mg/kg	3,000	0.18	0.1	0.11	0.047 J	0.13	0.0036 J	0.097	0.024 J	0.07 U	0.044 J
3,3'-Dichlorobenzidine	mg/kg	5.1	0.75 U	0.016 J	0.71 U	0.072 U	0.73 U	0.093 U	0.72 U	0.73 U	0.18 J	0.73 U
Acenaphthene	mg/kg	45,000	0.066	0.082	0.028 J	0.17	0.016 J	0.0034 J	0.014 J	0.018 J	0.023 J	0.057 J
Acenaphthylene	mg/kg	45,000	0.059	0.13	0.088	0.019 J	0.13	0.0091 U	0.083	0.028 J	0.026 J	0.033 J
Acetophenone	mg/kg	120,000	0.75 U	0.072 U	0.71 U	0.072 U	0.73 U	0.093 U	0.72 U	0.73 U	0.71 U	0.73 U
Anthracene	mg/kg	230,000	0.084	0.53	0.076	0.089	0.13	0.0091 U	0.094	0.11	0.035 J	0.19
Benz[a]anthracene	mg/kg	21	0.52	0.66	0.4	0.58	0.58	0.0029 J	0.38	0.41	0.13	0.32
Benzaldehyde	mg/kg	120,000	0.75 U	0.072 U	0.71 U	0.072 U	0.73 U	0.093 U	0.72 U	0.73 U	0.71 U	0.73 U
Benzo[a]pyrene	mg/kg	2.1	0.68	0.9	0.51	1.1	0.8	0.0029 J	0.44	0.42	0.15	0.26
Benzo[b]fluoranthene	mg/kg	21	0.88	1.2	1.1	1.9	1.8	0.0047 J	0.97	1	0.59	0.49
Benzo[g,h,i]perylene	mg/kg		0.46	0.59	0.14	0.38	0.19	0.0091 U	0.2	0.1	0.063 J	0.14
Benzo[k]fluoranthene	mg/kg	210	0.29	0.39	0.83	1.5	1.4	0.0091 U	0.75	0.77	0.46	0.38
bis(2-Ethylhexyl)phthalate	mg/kg	160	0.75 U	0.032 J	0.71 U	0.072 U	0.73 U	0.093 U	0.72 U	0.73 U	0.71 U	0.73 U
Caprolactam	mg/kg	400,000	1.9 U	0.027 J	1.8 U	0.027 J	1.8 U	0.055 J	1.8 U	1.8 U	1.8 U	1.8 U
Carbazole	mg/kg		0.75 U	0.11	0.71 U	0.072 U	0.73 U	0.093 U	0.72 U	0.73 U	0.71 U	0.73 U
Chrysene	mg/kg	2,100	0.5	0.79	0.38	0.54	0.61	0.0025 J	0.41	0.44	0.31	0.37
Dibenz[a,h]anthracene	mg/kg	2.1	0.13	0.18	0.067 J	0.18	0.099	0.0091 U	0.088	0.049 J	0.029 J	0.045 J
Diethylphthalate	mg/kg	660,000	0.75 U	0.072 U	0.71 U	0.072 U	0.73 U	0.019 J	0.72 U	0.73 U	0.71 U	0.73 U
Di-n-butylphthalate	mg/kg	82,000	0.75 U	0.09	0.71 U	0.042 J	0.73 U	0.084 J	0.72 U	0.73 U	0.71 U	0.73 U
Di-n-ocytlphthalate	mg/kg	8,200	0.75 U	0.073	0.71 U	0.072 U	0.73 U	0.093 U	0.72 U	0.73 U	0.71 U	0.73 U
Fluoranthene	mg/kg	30,000	0.68	1.2	0.57	0.67	0.68	0.0031 J	0.48	0.78	0.21	0.93
Fluorene	mg/kg	30,000	0.024	0.051	0.015 J	0.029 J	0.014 J	0.0091 U	0.015 J	0.036 J	0.02 J	0.075
Indeno[1,2,3-c,d]pyrene	mg/kg	21	0.51	0.84	0.17	0.45	0.24	0.0091 U	0.21	0.1	0.05 J	0.14
Naphthalene	mg/kg	8.6	0.69	0.36	0.11	0.076	0.11	0.01	0.073	0.026 J	0.018 J	0.075
Phenanthrene	mg/kg		0.35	0.53	0.27	0.33	0.31	0.0044 J	0.14	0.42	0.12	0.6
Pyrene	mg/kg	23,000	0.62	0.94	0.54	0.62	0.69	0.0026 J	0.5	0.59	0.22	1.1
PCBs	1	•			T				T	T	1	1
Aroclor 1242	mg/kg	0.97	0.093 U	N/A	0.017 U	N/A	0.018 U	N/A	0.018 U	N/A	N/A	N/A
Aroclor 1248	mg/kg	0.94	0.071 J	N/A	0.017 U	N/A	0.018 U	N/A	0.018 U	N/A	N/A	N/A
Aroclor 1254	mg/kg	0.97	0.087 J	N/A	0.017 U	N/A	0.018 U	N/A	0.018 U	N/A	N/A	N/A
Aroclor 1260	mg/kg	0.99	0.053 J	N/A	0.11	N/A	0.018 U	N/A	0.068	N/A	N/A	N/A
Aroclor 1268	mg/kg		0.093 U	N/A	0.017 U	N/A	0.018 U	N/A	0.018 U	N/A	N/A	N/A
PCBs (total)	mg/kg	0.97	0.84 U	N/A	0.11 J	N/A	0.16 U	N/A	0.068 J	N/A	N/A	N/A
TPH/Oil & Grease	1											
Diesel Range Organics	mg/kg	6,200	89.7	466	69.7	45.3	67.6	12.6	124	1,230	491	252
Gasoline Range Organics	mg/kg	6,200	12.4 U	11.3 U	12.9 U	11.6 U	15.6 U	23.6 U	14.6 U	23.7	9.2 U	9.6 U
Oil & Grease	mg/kg	6,200	306	1,280	441	135	342	140 U	1,900	14,900	19,200	2,860

Detections in bold

Values in red indicate exceedances of the Project Action Limit (PAL)

*Indicates non-validated data

^PAH compounds were analyzed via SIM

N/A indicates that the parameter was not analyzed for this sample

U: This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit. UJ: This analyte was not detected in the sample. The acutla quantitation/detection limit may be higher than reported. B: The analyte was not detected substantially above the level of the associated method blank or field blank. J: The positive result reported for this analyte is a quantitative estimate.

J-: The positive result reported for this analyte is a quantitative estimate but may be biased low.

Page 7 of 7

Demonster	I.I., ita	DAI	B24-001-SB-1*	B24-001-SB-5*	B24-002-SB-1	B24-002-SB-4	B24-003-SB-1*	B24-003-SB-4*	B24-004-SB-1*	B24-004-SB-5*
Parameter	Units	PAL	4/14/2020	4/14/2020	4/17/2020	4/17/2020	4/16/2020	4/16/2020	4/16/2020	4/16/2020
Metals										
Aluminum	mg/kg	1,100,000	6,960	5,590	11,000 J	7,700 J	6,680	12,700	13,500	5,660
Antimony	mg/kg	470	3.3 U	3.2 U	3.2 UJ	3 UJ	3 U	3.1 U	2.9 U	2.9 U
Arsenic	mg/kg	3	3.3	2.7 U	2.6 U	2.5 U	12.1	7.6	2.4 U	2.4 U
Barium	mg/kg	220,000	148	157	203	125	118	143	143	87.6
Beryllium	mg/kg	2,300	0.78 J	0.8 J	0.87 J	0.34 J	0.82 J	0.81 J	1.1	0.17 J
Cadmium	mg/kg	980	0.59 J	1.3 J	2.2	4.2	1.3 J	1.6 U	1.3 J	1.1 J
Chromium	mg/kg	120,000	640	1,230	973 J	1,530 J	35	81.8	780	1,400
Chromium VI	mg/kg	6.3	0.81 J	3	0.63 J-	0.54 J-	0.84 J	0.79 J	0.79 J	2.7
Cobalt	mg/kg	350	7.3	2.2 J	10.1 J	8.5 J	9.6	7.6	6.3	11.6
Copper	mg/kg	47,000	53.3	28.2	74.6	74.7	62.9	87.6	52.2	35
Iron	mg/kg	820,000	229,000	148,000	134,000	185,000	36,600	72,300	158,000	177,000
Lead	mg/kg	800	35.8	44.7	212	218	99	15.5	75.8	37.4
Manganese	mg/kg	26,000	18,600	23,500	18,100	25,000	1,030	15,200	23,300	26,200
Mercury	mg/kg	350	0.11 U	0.1 U	0.088 J	0.081 J	0.088 J	0.0067 J	0.045 J	0.021 J
Nickel	mg/kg	22,000	40.5	14.6	29.4	23.8	25.7	14.5	21.2	12.6
Selenium	mg/kg	5,800	4.5 U	4.3 U	4.2 U	3.9 U	4 U	4.2 U	3.9 U	3.9 U
Thallium	mg/kg	12	11.2 U	11.6	10.6 U	9.9 U	10.1 U	10.4 U	9.7 U	3.6 J
Vanadium	mg/kg	5,800	903	3,140	1,510	2,820	77	476	821	3,000
Zinc	mg/kg	350,000	194	341	512 J	447 J	293	24	277	218
Other										
Cyanide	mg/kg	150	1.3	0.55 J	1.3 J-	1.1 J-	0.27 J	0.33 J	1	0.52 J

Detections in bold

Values in red indicate exceedances of the

Project Action Limit (PAL)

*Indicates non-validated data

N/A indicates that the parameter was not

analyzed for this sample

U: This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit.

UJ: This analyte was not detected in the sample. The actual quantitation/detection limit may be higher than reported.

B: The analyte was not detected substantially above the level of the associated method blank or field blank.

J: The positive result reported for this analyte is a quantitative estimate.

J-: The positive result reported for this analyte is a quantitative estimate but may be biased low.

Demonstern	I In ite	DAI	B24-005-SB-1	B24-005-SB-4	B24-006-SB-1	B24-006-SB-4	B24-007-SB-1*	B24-007-SB-5*	B24-008-SB-1	B24-008-SB-5
Parameter	Units	PAL	4/17/2020	4/17/2020	4/17/2020	4/17/2020	4/21/2020	4/21/2020	4/20/2020	4/20/2020
Metals										
Aluminum	mg/kg	1,100,000	12,600 J	12,400 J	7,370 J	8,560 J	6,890	10,600	8,210	10,400
Antimony	mg/kg	470	3.1 UJ	3.1 UJ	2.9 UJ	3 UJ	2.9 U	3 U	3 UJ	3 UJ
Arsenic	mg/kg	3	2.6 U	2.6 U	15.2	6.1	2.4 U	7.3	4.7	2.5 J
Barium	mg/kg	220,000	112	54.5	128	143	186	158	122	274
Beryllium	mg/kg	2,300	0.57 J	1 U	0.39 J	0.42 J	0.69 J	0.96 J	0.79 J	1.3
Cadmium	mg/kg	980	4	1.6	5.8	6.2	1.5	7.3	1.5	1.3 J
Chromium	mg/kg	120,000	1,020 J	1,220 J	728 J	937 J	1,260	964	1,070	1,160
Chromium VI	mg/kg	6.3	0.77 J-	6.4 J-	0.65 J-	0.76 J-	0.6 J	1.1 U	1.1 R	0.55 B
Cobalt	mg/kg	350	6.2 J	2.7 J	13.4 J	9.3 J	6.3	13	13.3	9.6
Copper	mg/kg	47,000	72.6	43.1	182	140	2,050	169	104	80.7
Iron	mg/kg	820,000	170,000	178,000	166,000	169,000	136,000	165,000	167,000	199,000
Lead	mg/kg	800	294	47.8	481	516	115	750	164	122
Manganese	mg/kg	26,000	22,500	28,200	14,600	19,700	32,500	21,800	22,400	29,600
Mercury	mg/kg	350	0.065 J	0.013 J	0.5	0.33	0.083 J	0.18	0.2	0.14
Nickel	mg/kg	22,000	24.2	12.7	62.2	52.3	33.5	46.1	45.8	32.6
Selenium	mg/kg	5,800	4.1 U	4.1 U	3.9 U	4 U	3.8 U	4.1 U	3.9 U	4 U
Thallium	mg/kg	12	10.3 U	10.2 U	9.7 U	10 U	16.9	6 J	6.2 J	8.2 J
Vanadium	mg/kg	5,800	888	809	398	1,060	3,760	1,650	2,160 J	2,760 J
Zinc	mg/kg	350,000	470 J	146 J	909 J	1,020 J	293	1,100	467 J	328 J
Other										
Cyanide	mg/kg	150	1.1 UJ	0.29 J-	1.5 J-	1.1 J-	1.1	1.7	2.7 J-	1.3 J-

Detections in bold

Values in red indicate exceedances of the

Project Action Limit (PAL)

*Indicates non-validated data

N/A indicates that the parameter was not

analyzed for this sample

U: This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit.

UJ: This analyte was not detected in the sample. The actual quantitation/detection limit may be higher than reported.

B: The analyte was not detected substantially above the level of the associated method blank or field blank.

J: The positive result reported for this analyte is a quantitative estimate.

J-: The positive result reported for this analyte is a quantitative estimate but may be biased low.

Demonster	T In the	DAI	B24-009-SB-1.5	B24-009-SB-5	B24-010-SB-1	B24-010-SB-5	B24-011-SB-1	B24-011-SB-4	B24-012-SB-1	B24-012-SB-8
Parameter	Units	PAL	4/20/2020	4/20/2020	4/20/2020	4/20/2020	4/20/2020	4/20/2020	4/20/2020	4/20/2020
Metals										
Aluminum	mg/kg	1,100,000	7,920	7,750	24,200	13,400	19,800	19,100	27,500	15,600
Antimony	mg/kg	470	3 UJ	3.1 UJ	3.1 UJ	3.2 UJ	3 UJ	3 UJ	3 UJ	3.4 UJ
Arsenic	mg/kg	3	2.5 U	11.2	2.6 U	4.4	8.4	9.4	2.5 U	5.8
Barium	mg/kg	220,000	465	127	81.2	41.1	169	182	236	103
Beryllium	mg/kg	2,300	0.94 J	0.7 J	0.48 J	0.41 J	2.1	2	4.6	0.91 J
Cadmium	mg/kg	980	2.2	1.9	0.83 J	1.6 U	3.3	2.3	1.4 J	0.47 J
Chromium	mg/kg	120,000	1,300	77.1	1,330	35.7	346	435	532	54.6
Chromium VI	mg/kg	6.3	0.72 B	1.1 R	1.6 J-	0.81 B	1.1 R	1.1 R	0.55 B	1.3 R
Cobalt	mg/kg	350	4.3 J	17.6	0.72 J	2.6 J	10.9	15.5	3.2 J	5.7 J
Copper	mg/kg	47,000	115	101	20.5	14.5	91.2	74.4	43.6	22.3
Iron	mg/kg	820,000	206,000	70,900	182,000	16,900	89,900	94,300	130,000	29,300
Lead	mg/kg	800	128	567	11.4	16.6	216	382	53.8	83.2
Manganese	mg/kg	26,000	32,400	3,750	27,100	100	6,470	16,700	16,000	1,490
Mercury	mg/kg	350	0.049 J	0.083 J	0.1 U	0.011 J	0.15	0.028 J	0.012 J	0.055 J
Nickel	mg/kg	22,000	18.1	45.2	12.5	7.4 J	64	74.1	19.8	13.4
Selenium	mg/kg	5,800	4 U	4.1 U	4.1 U	4.3 U	4 U	4 U	4 U	4.6 U
Thallium	mg/kg	12	10.7	10.3 U	10.3 U	10.6 U	10.1 U	10 U	10.1 U	11.5 U
Vanadium	mg/kg	5,800	3,200 J	128 J	623 J	46.3 J	214 J	519 J	567 J	119 J
Zinc	mg/kg	350,000	423 J	778 J	223 J	42.6 J	725 J	598 J	801 J	166 J
Other										
Cyanide	mg/kg	150	1.5 J-	2.4 J-	0.62 J-	0.59 J-	2.5 J-	1.3 J-	1.1 J-	0.78 J-

Detections in bold

Values in red indicate exceedances of the

Project Action Limit (PAL)

*Indicates non-validated data

N/A indicates that the parameter was not

analyzed for this sample

U: This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit.

UJ: This analyte was not detected in the sample. The actual quantitation/detection limit may be higher than reported.

B: The analyte was not detected substantially above the level of the associated method blank or field blank.

J: The positive result reported for this analyte is a quantitative estimate.

J-: The positive result reported for this analyte is a quantitative estimate but may be biased low.

Demonstern	I In ite	DAI	B24-012-SB-10*	B24-013-SB-1*	B24-013-SB-5*	B24-014-SB-1*	B24-014-SB-5*	B24-015-SB-1*	B24-016-SB-1*	B24-016-SB-5*
Parameter	Units	PAL	4/20/2020	4/14/2020	4/14/2020	4/14/2020	4/14/2020	4/16/2020	4/16/2020	4/16/2020
Metals										
Aluminum	mg/kg	1,100,000	N/A	13,000	37,900	21,600	39,800	12,000	7,420	8,520
Antimony	mg/kg	470	N/A	3.1 U	2.9 U	3.1 U	3 U	3.1 U	2.9 U	2.9 U
Arsenic	mg/kg	3	8.9	2.6 U	3.1	2.6 U	2.5 U	12.3	4.1	2.4 U
Barium	mg/kg	220,000	N/A	53.4	369	46.5	392	183	131	208
Beryllium	mg/kg	2,300	N/A	0.33 J	7	0.19 J	7.7	1	0.43 J	0.45 J
Cadmium	mg/kg	980	N/A	1.4 J	1.5 U	0.59 J	1.5 U	3.1	11.3	1.4 J
Chromium	mg/kg	120,000	N/A	1,900	21.8	1,200	19.9	649	557	1,370
Chromium VI	mg/kg	6.3	N/A	1 J	1.1 U	4.6	0.62 J	0.76 J	0.64 J	0.72 J
Cobalt	mg/kg	350	N/A	1.7 J	0.89 J	1.2 J	0.79 J	17.6	10.4	8.5
Copper	mg/kg	47,000	N/A	27	4.9 U	20	5.1 U	123	87.1	51.4
Iron	mg/kg	820,000	N/A	196,000	14,300	155,000	25,000	164,000	153,000	194,000
Lead	mg/kg	800	N/A	4.8	3.8	4.3	3.6	322	171	64.3
Manganese	mg/kg	26,000	N/A	32,800	2,410	27,400	2,540	22,100	13,500	23,500
Mercury	mg/kg	350	N/A	0.11 U	0.1 U	0.1 U	0.1 U	0.11	0.1	0.097 J
Nickel	mg/kg	22,000	N/A	24.2	3.3 J	14.9	4.2 J	55.6	40.7	17
Selenium	mg/kg	5,800	N/A	4.2 U	3.9 U	4.1 U	4 J	4.1 U	3.8 U	3.8 U
Thallium	mg/kg	12	N/A	10.4 U	9.8 U	10.3 U	10.1 U	10.2 U	9.5 U	9.6 U
Vanadium	mg/kg	5,800	N/A	905	17.3	713	15.7	964	1,350	2,880
Zinc	mg/kg	350,000	N/A	69.8	5.8	60.3	6.2	684	529	337
Other										
Cyanide	mg/kg	150	N/A	0.57 J	0.64 J	0.57 J	0.83 J	2.4	1.7	1.2

Detections in bold

Values in red indicate exceedances of the

Project Action Limit (PAL)

*Indicates non-validated data

N/A indicates that the parameter was not

analyzed for this sample

U: This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit.

UJ: This analyte was not detected in the sample. The actual quantitation/detection limit may be higher than reported.

B: The analyte was not detected substantially above the level of the associated method blank or field blank.

J: The positive result reported for this analyte is a quantitative estimate.

J-: The positive result reported for this analyte is a quantitative estimate but may be biased low.

Demonster	I In ite	DAI	B24-017-SB-1	B24-017-SB-5	B24-018-SB-1	B24-018-SB-5	B24-019-SB-1	B24-019-SB-5	B24-020-SB-1	B24-020-SB-8
Parameter	Units	PAL	4/20/2020	4/20/2020	4/17/2020	4/17/2020	4/20/2020	4/20/2020	4/17/2020	4/17/2020
Metals										
Aluminum	mg/kg	1,100,000	16,100	22,500	14,900 J	7,650 J	20,200	8,610	20,600 J	4,240 J
Antimony	mg/kg	470	3 UJ	3.1 UJ	2.9 UJ	3 UJ	3 UJ	3 UJ	2.9 UJ	12.7 J
Arsenic	mg/kg	3	2.5 U	4.2	2.9	2.5 U	2.5 U	2.4 J	2.8	23.9
Barium	mg/kg	220,000	172	277	184	127	205	106	123	51.2
Beryllium	mg/kg	2,300	1.8	3.2	2	0.2 J	2.9	0.72 J	0.62 J	0.21 J
Cadmium	mg/kg	980	2.7	1.4 J	2.9	1 J	1.6	0.95 J	2.7	1.8
Chromium	mg/kg	120,000	582	494	645 J	1,180 J	668	832	874 J	295 J
Chromium VI	mg/kg	6.3	1.1 R	0.58 B	0.7 J-	0.76 J-	0.62 B	0.6 B	0.56 J-	5.6 J-
Cobalt	mg/kg	350	5.2	5.4	7.1 J	7 J	3.4 J	7.6	6.6 J	48.3 J
Copper	mg/kg	47,000	61.3	65.6	60	44	40.6	68.7	86.9	381
Iron	mg/kg	820,000	122,000	105,000	123,000	208,000	109,000	236,000	211,000	267,000
Lead	mg/kg	800	95.2	133	311	124	82.4	61.7	98.8	1,050
Manganese	mg/kg	26,000	14,400	13,400	13,200	26,600	16,200	21,300	26,800	4,700
Mercury	mg/kg	350	0.087 J	0.11 U	0.14	0.035 J	0.046 J	0.063 J	0.067 J	0.098 U
Nickel	mg/kg	22,000	31.9	30.6	27.4	13.6	22.1	29.6	37.4	109
Selenium	mg/kg	5,800	4 U	4.1 U	3.9 U	4 U	4 U	4 U	3.9 U	3.8 U
Thallium	mg/kg	12	9.9 U	10.2 U	9.8 U	10.1 U	10 U	5.7 J	9.8 U	9.6 U
Vanadium	mg/kg	5,800	422 J	944 J	1,030	3,320	647 J	1,950 J	671	878
Zinc	mg/kg	350,000	436 J	240 J	596 J	245 J	335 J	217 J	553 J	1,790 J
Other										
Cyanide	mg/kg	150	1 J-	0.16 J-	1.4 J-	1.1 J-	1.3 J-	3.2 J-	0.99 J-	0.44 J-

Detections in bold

Values in red indicate exceedances of the

Project Action Limit (PAL)

*Indicates non-validated data

N/A indicates that the parameter was not

analyzed for this sample

U: This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit.

UJ: This analyte was not detected in the sample. The actual quantitation/detection limit may be higher than reported.

B: The analyte was not detected substantially above the level of the associated method blank or field blank.

J: The positive result reported for this analyte is a quantitative estimate.

J-: The positive result reported for this analyte is a quantitative estimate but may be biased low.

Demonstern	I In ite	DAI	B24-021-SB-1*	B24-021-SB-5*	B24-022-SB-1*	B24-022-SB-5*	B24-023-SB-1*	B24-023-SB-5*	B24-024-SB-1*	B24-024-SB-5*
Parameter	Units	PAL	4/21/2020	4/21/2020	4/21/2020	4/21/2020	4/21/2020	4/21/2020	4/21/2020	4/21/2020
Metals										
Aluminum	mg/kg	1,100,000	7,370	7,240	12,300	8,140	10,400	6,630	21,700	9,430
Antimony	mg/kg	470	2.9 U	2.9 U	3 U	3 U	3 U	3.1 U	3 U	2.9 U
Arsenic	mg/kg	3	2.6	2.4 U	5.4	2.5 U	3.5	3.8	2.5 U	2.4 U
Barium	mg/kg	220,000	66	100	176	98.1	111	77.8	256	162
Beryllium	mg/kg	2,300	0.67 J	0.69 J	1.2	0.81 J	0.89 J	0.44 J	2.5	0.68 J
Cadmium	mg/kg	980	0.73 J	0.78 J	6.3	0.99 J	1.8	1.4 J	1.1 J	2.2
Chromium	mg/kg	120,000	532	1,270	1,120	1,020	916	503	839	1,100
Chromium VI	mg/kg	6.3	1.1 J	1.4	1.1 U	0.57 J	0.55 J	0.65 J	0.67 J	0.95 J
Cobalt	mg/kg	350	5.5	12.1	8.6	6.2	14.4	10.5	8.6	9.4
Copper	mg/kg	47,000	47.6	74.2	110	121	67	151	2,180	91.9
Iron	mg/kg	820,000	143,000	182,000	166,000	195,000	134,000	111,000	129,000	131,000
Lead	mg/kg	800	66.2	81	428	94.4	204	201	172	150
Manganese	mg/kg	26,000	33,300	36,000	18,500	26,700	20,100	11,900	16,400	51,900
Mercury	mg/kg	350	0.11	0.085 J	0.25	0.049 J	0.15	0.11 J	0.049 J	0.029 J
Nickel	mg/kg	22,000	17.4	26.8	36.1	19.4	41.6	34.7	39.1	33.9
Selenium	mg/kg	5,800	3.9 U	3.9 U	4 U	4 U	3.9 U	4.1 U	4 U	3.9 U
Thallium	mg/kg	12	9.7 U	13.8	7.9 J	10.6	7.6 J	4.6 J	3.5 J	9.7 U
Vanadium	mg/kg	5,800	1,530	3,270	1,880	2,760	2,220	1,240	1,500	2,600
Zinc	mg/kg	350,000	188	286	943	383	621	945	257	348
Other										
Cyanide	mg/kg	150	0.37 J	0.98 U	2.4	3	2.3	1.4	1.1 J	0.81 J

Detections in bold

Values in red indicate exceedances of the

Project Action Limit (PAL)

*Indicates non-validated data

 $N\!/\!A$ indicates that the parameter was not

analyzed for this sample

U: This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit.

UJ: This analyte was not detected in the sample. The actual quantitation/detection limit may be higher than reported.

B: The analyte was not detected substantially above the level of the associated method blank or field blank.

J: The positive result reported for this analyte is a quantitative estimate.

J-: The positive result reported for this analyte is a quantitative estimate but may be biased low.

Devenueter	T Tur ida	DAI	B24-025-SB-1*	B24-025-SB-5*	B24-025-SB-10*	B24-025-SB-15*	B24-026-SB-1*	B24-026-SB-5*	B24-026-SB-10*
Parameter	Units	PAL	4/14/2020	4/14/2020	4/14/2020	4/15/2020	4/14/2020	4/14/2020	4/14/2020
Metals									
Aluminum	mg/kg	1,100,000	8,190	7,730	7,950	14,800	13,900	12,400	14,200
Antimony	mg/kg	470	3.2 U	3 U	3.2 U	3.5 U	3.2 U	3.3 U	3.5 U
Arsenic	mg/kg	3	2.6 U	9.3	5.4	4.9	9.2	11.8	6.4
Barium	mg/kg	220,000	79.2	151	106	305	191	145	75
Beryllium	mg/kg	2,300	0.56 J	0.38 J	0.46 J	1.1 J	1.4	0.68 J	0.61 J
Cadmium	mg/kg	980	1.3 J	2.6	3.4	4.6	1.7	8.1	4.8
Chromium	mg/kg	120,000	518	416	386	264	188	146	90.6
Chromium VI	mg/kg	6.3	0.66 J	0.73 J	0.84 J	0.81 J	1.1 U	1.2 U	0.64 J
Cobalt	mg/kg	350	4.4 J	6.3	7.6	4.6 J	19.3	14.3	8
Copper	mg/kg	47,000	43.6	69.6	70.6	57.5	126	143	44.5
Iron	mg/kg	820,000	108,000	128,000	127,000	72,700	60,300	54,700	57,700
Lead	mg/kg	800	158	489	305	293	176	750	230
Manganese	mg/kg	26,000	10,800	8,410	9,000	8,190	14,100	2,970	1,810
Mercury	mg/kg	350	0.034 J	0.14	0.14	0.053 J	0.18	0.1 J	0.081 J
Nickel	mg/kg	22,000	26.4	33.6	39.6	22	47.1	53.8	26.4
Selenium	mg/kg	5,800	4.2 U	4 U	4.3 U	4.6 U	4.3 U	4.4 U	4.7 U
Thallium	mg/kg	12	10.6 U	10.1 U	10.6 U	11.6 U	10.7 U	11.1 U	11.7 U
Vanadium	mg/kg	5,800	570	394	380	290	173	273	82.4
Zinc	mg/kg	350,000	372	1,010	649	554	552	1,760	753
Other									
Cyanide	mg/kg	150	0.63 J	0.73 J	1.2	1.1	1.5	1.5	0.61 J

Detections in bold

Values in red indicate exceedances of the

Project Action Limit (PAL)

*Indicates non-validated data

N/A indicates that the parameter was not

analyzed for this sample

U: This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit.

UJ: This analyte was not detected in the sample. The actual quantitation/detection limit may be higher than reported.

B: The analyte was not detected substantially above the level of the associated method blank or field blank.

J: The positive result reported for this analyte is a quantitative estimate.

J-: The positive result reported for this analyte is a quantitative estimate but may be biased low.

Demonstern	TT.	DAI	B24-026-SB-16*	B24-027-SB-1*	B24-027-SB-5*	B24-028-SB-1*	B24-028-SB-5*	B24-029-SB-1	B24-029-SB-9
Parameter	Units	PAL	4/14/2020	4/16/2020	4/16/2020	4/21/2020	4/21/2020	4/20/2020	4/20/2020
Metals									
Aluminum	mg/kg	1,100,000	18,500	10,800	7,960	9,010	6,580	12,800	7,220
Antimony	mg/kg	470	3.3 U	3 U	3 U	3 U	3 U	3 UJ	4.1 J
Arsenic	mg/kg	3	2.8 U	2.5 U	2.5 U	4.4	2.5 U	37.3	25.6
Barium	mg/kg	220,000	200	161	128	118	142	209	161
Beryllium	mg/kg	2,300	2.6	0.85 J	0.36 J	0.72 J	0.71 J	1.8	0.57 J
Cadmium	mg/kg	980	2	1.3 J	1.1 J	4.4	0.54 J	1.5 U	2.7
Chromium	mg/kg	120,000	409	646	1,080	987	1,560	34.3	192
Chromium VI	mg/kg	6.3	0.62 J	1.1 U	0.81 J	1.1 U	0.94 J	1.1 R	1.1 R
Cobalt	mg/kg	350	9.2	9.1	9.6	10.8	4.3 J	10.5	31
Copper	mg/kg	47,000	33	56.2	59	83.9	42.5	45.7	519
Iron	mg/kg	820,000	54,700	118,000	183,000	145,000	166,000	29,000	250,000
Lead	mg/kg	800	98.3	84.3	86.7	240	37.6	31.5	259
Manganese	mg/kg	26,000	3,370	16,800	25,700	18,600	30,700	651	3,780
Mercury	mg/kg	350	0.11 U	0.081 J	0.054 J	0.09 J	0.13	0.012 J	0.097 J
Nickel	mg/kg	22,000	36.1	24.7	26.4	52	13.3	22.1	94.5
Selenium	mg/kg	5,800	4.4 U	4 U	3.9 U	4 U	4 U	4 U	4 U
Thallium	mg/kg	12	11.1 U	9.9 U	9.9 U	9.6 J	17.1	10.1 U	10 U
Vanadium	mg/kg	5,800	144	1,430	2,480	2,280	4,250	75.4 J	440 J
Zinc	mg/kg	350,000	521	366	253	774	112	140 J	628 J
Other									
Cyanide	mg/kg	150	0.54 J	1.8	1.1	1.8	0.67 J	0.5 J-	0.84 J-

Detections in bold

Values in red indicate exceedances of the

Project Action Limit (PAL)

*Indicates non-validated data

N/A indicates that the parameter was not

analyzed for this sample

U: This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit.

UJ: This analyte was not detected in the sample. The actual quantitation/detection limit may be higher than reported.

B: The analyte was not detected substantially above the level of the associated method blank or field blank.

J: The positive result reported for this analyte is a quantitative estimate.

J-: The positive result reported for this analyte is a quantitative estimate but may be biased low.

Demonstern	I.I	DAI	B24-030-SB-1	B24-030-SB-9	B24-031-SB-1.5	B24-031-SB-5	B24-032-SB-1*	B24-032-SB-5*	B24-032-SB-10*
Parameter	Units	PAL	4/17/2020	4/17/2020	4/17/2020	4/17/2020	4/15/2020	4/15/2020	4/15/2020
Metals									
Aluminum	mg/kg	1,100,000	18,400 J	6,180 J	17,500 J	5,440 J	21,500	6,320	N/A
Antimony	mg/kg	470	3.1 UJ	3.1 UJ	3 UJ	2.9 UJ	3.3 U	37.4	N/A
Arsenic	mg/kg	3	5.6	4.3	12.7	2.4 U	123	29.6	3.5
Barium	mg/kg	220,000	242	63.6	207	63.5	587	137	N/A
Beryllium	mg/kg	2,300	3	1 U	2.4	0.19 J	1.7	0.81 J	N/A
Cadmium	mg/kg	980	4.3	1.6	12.2	0.8 J	2.2	2.9	N/A
Chromium	mg/kg	120,000	471 J	508 J	622 J	761 J	121	50.9	N/A
Chromium VI	mg/kg	6.3	1.1 UJ	0.63 J-	1.1 UJ	0.54 J-	0.71 J	0.87 J	N/A
Cobalt	mg/kg	350	10.2 J	23 J	10.6 J	3.8 J	14.4	18	N/A
Copper	mg/kg	47,000	104	106	141	32.9	241	4,660	N/A
Iron	mg/kg	820,000	106,000	179,000	109,000	78,700	89,600	121,000	N/A
Lead	mg/kg	800	433	178	1,300	28.9	273	1,280	211
Manganese	mg/kg	26,000	10,300	20,700	14,300	9,210	11,100	1,180	N/A
Mercury	mg/kg	350	0.18	0.15	0.25	0.011 J	0.11	0.043 J	N/A
Nickel	mg/kg	22,000	50.8	46.3	49.8	6 J	51	56	N/A
Selenium	mg/kg	5,800	4.1 U	4.1 U	3.9 U	3.9 U	4.4 U	4.9 U	N/A
Thallium	mg/kg	12	10.2 U	10.4 U	9.8 U	9.8 U	11 U	12.2 U	N/A
Vanadium	mg/kg	5,800	343	1,340	293	835	269	111	N/A
Zinc	mg/kg	350,000	806 J	571 J	1,820 J	168 J	626	6,810	N/A
Other									
Cyanide	mg/kg	150	0.64 J-	1.9 J-	1.9 J-	0.3 J-	1.2	0.69 J	N/A

Detections in bold

Values in red indicate exceedances of the

Project Action Limit (PAL)

*Indicates non-validated data

N/A indicates that the parameter was not

analyzed for this sample

U: This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit.

UJ: This analyte was not detected in the sample. The actual quantitation/detection limit may be higher than reported.

B: The analyte was not detected substantially above the level of the associated method blank or field blank.

J: The positive result reported for this analyte is a quantitative estimate.

J-: The positive result reported for this analyte is a quantitative estimate but may be biased low.

Donomoton	Linita	DAI	B24-033-SB-1*	B24-033-SB-5*	B24-033-SB-10*	B24-034-SB-1*	B24-034-SB-5*	B24-035-SB-1*	B24-035-SB-4*
Parameter	Units	PAL	4/15/2020	4/15/2020	4/15/2020	4/21/2020	4/21/2020	4/15/2020	4/15/2020
Metals									
Aluminum	mg/kg	1,100,000	15,000	32,100	N/A	9,190	8,810	38,200	6,530
Antimony	mg/kg	470	3.1 U	3.7 U	N/A	3.2 U	2.9 U	3 U	3.2 U
Arsenic	mg/kg	3	11.3	8	13	2.6 U	2.4 U	4.2	2.6 U
Barium	mg/kg	220,000	271	436	N/A	100	128	461	68.9
Beryllium	mg/kg	2,300	1.2	2.3	N/A	1 J	0.99	7.2	1.4
Cadmium	mg/kg	980	0.91 J	1.8 U	N/A	2	1.6	1.2 J	0.94 J
Chromium	mg/kg	120,000	101	35.6	N/A	957	961	122	1,350
Chromium VI	mg/kg	6.3	0.81 J	0.7 J	N/A	1.1 U	0.55 J	1.1 U	0.86 J
Cobalt	mg/kg	350	11.1	1.5 J	N/A	16.6	9.4	2.4 J	9.4
Copper	mg/kg	47,000	113	14.9	N/A	79.2	76.7	30.6	56.2
Iron	mg/kg	820,000	65,700	6,960	N/A	149,000	145,000	35,500	227,000
Lead	mg/kg	800	189	7.6	N/A	105	143	84.9	36.1
Manganese	mg/kg	26,000	3,100	4,680	N/A	20,400	18,200	5,630	39,500
Mercury	mg/kg	350	0.089 J	0.13 U	N/A	0.092 J	0.096 J	0.065 J	0.11 U
Nickel	mg/kg	22,000	28.7	2.4 J	N/A	61.2	42.4	14.9	66.3
Selenium	mg/kg	5,800	4.1 U	4.9 U	N/A	4.2 U	3.9 U	4 U	4.2 U
Thallium	mg/kg	12	10.2 U	12.2 U	N/A	10.5 U	3.8 J	10 U	13
Vanadium	mg/kg	5,800	345	285	N/A	1,280	1,480	132	3,900
Zinc	mg/kg	350,000	287	4.2 B	N/A	521	351	322	174
Other									
Cyanide	mg/kg	150	1.5	2.9	N/A	2.2	2	0.81 J	1

Detections in bold

Values in red indicate exceedances of the

Project Action Limit (PAL)

*Indicates non-validated data

N/A indicates that the parameter was not

analyzed for this sample

U: This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit.

UJ: This analyte was not detected in the sample. The actual quantitation/detection limit may be higher than reported.

B: The analyte was not detected substantially above the level of the associated method blank or field blank.

J: The positive result reported for this analyte is a quantitative estimate.

J-: The positive result reported for this analyte is a quantitative estimate but may be biased low.

Demonstern	TT. it.	DAI	B24-036-SB-1*	B24-036-SB-8*	B24-036-SB-10*	B24-037-SB-1*	B24-037-SB-8*	B24-037-SB-10*	B24-037-SB-12*
Parameter	Units	PAL	4/15/2020	4/15/2020	4/15/2020	4/16/2020	4/16/2020	4/16/2020	4/16/2020
Metals									
Aluminum	mg/kg	1,100,000	23,900	26,300	N/A	18,300	15,300	18,800	13,700
Antimony	mg/kg	470	3.4	3.8 U	N/A	3 U	3.1 U	3 U	3 U
Arsenic	mg/kg	3	16	4.7	5.2	6	2.6 U	3.2	3.9
Barium	mg/kg	220,000	361	1,510	N/A	179	140	176	190
Beryllium	mg/kg	2,300	2.8	3.9	N/A	1.6	1.4	2.4	1.5
Cadmium	mg/kg	980	1.1 J	0.48 J	N/A	1.7	0.66 J	0.45 J	2.2
Chromium	mg/kg	120,000	73.4	152	N/A	321	248	27.7	749
Chromium VI	mg/kg	6.3	0.7 J	0.77 J	N/A	0.66 J	0.56 J	1.1 U	0.57 J
Cobalt	mg/kg	350	7.7	10.4	N/A	10.3	5.6	3.1 J	10
Copper	mg/kg	47,000	75.7	15	N/A	75.1	32.3	14.8	75.6
Iron	mg/kg	820,000	57,700	11,400	N/A	78,400	94,400	21,000	106,000
Lead	mg/kg	800	112	17	N/A	118	51.2	31.6	87.2
Manganese	mg/kg	26,000	2,890	11,300	N/A	21,300	6,680	1,090	23,000
Mercury	mg/kg	350	0.095 J	0.14 U	N/A	0.26	0.026 J	0.021 J	0.18
Nickel	mg/kg	22,000	25.7	53.5	N/A	28.3	29.7	12.5	33.5
Selenium	mg/kg	5,800	4.1 U	5.1 U	N/A	4 U	4.1 U	4 U	4 U
Thallium	mg/kg	12	10.2 U	12.7 U	N/A	10.1 U	10.2 U	10.1 U	9.9 U
Vanadium	mg/kg	5,800	227	61.2	N/A	278	375	47.6	1,100
Zinc	mg/kg	350,000	222	76.5	N/A	452	432	46.3	536
Other									
Cyanide	mg/kg	150	0.88 J	1.8	N/A	4.9	0.59 J	3.5	1.4

Detections in bold

Values in red indicate exceedances of the

Project Action Limit (PAL)

*Indicates non-validated data

N/A indicates that the parameter was not

analyzed for this sample

U: This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit.

UJ: This analyte was not detected in the sample. The actual quantitation/detection limit may be higher than reported.

B: The analyte was not detected substantially above the level of the associated method blank or field blank.

J: The positive result reported for this analyte is a quantitative estimate.

J-: The positive result reported for this analyte is a quantitative estimate but may be biased low.

Table 8 - Parcel B24Summary of Soil PAL Exceedances

<u>Parameter</u>	<u>CAS#</u>	<u>Frequency of</u> <u>Detections (%)*</u>	<u>Frequency of</u> Exceedances (%)*	<u>Sample ID of</u> <u>Max Result</u>	<u>Max Result</u> (mg/kg)	<u>PAL Solid</u> (mg/kg)
Arsenic	7440-38-2	61%	55%	B24-032-SB-1	123	3
Benzo[a]pyrene	50-32-8	97%	9%	B24-007-SB-5	3.7	2.1
Chromium VI	18540-29-9	73%	1%	B24-005-SB-4	6.4 J-	6.3
Lead	7439-92-1	100%	4%	B24-031-SB-1.5	1,300	800
Manganese	7439-96-5	100%	20%	B24-024-SB-5	51,900	26,000
Oil & Grease	O&G	95%	4%	B24-032-SB-5	32,200	6,200
Thallium	7440-28-0	23%	5%	B24-028-SB-5	17.1	12

*Frequency of detections and exceedances calculated as a percentage based on the total number of samples analyzed for the parameter (excluding any rejected data results).

Table 9 - Parcel B24	
Soil PAL Exceedances for Specific T	argets

Target FeatureBoring ID	<u>Sample</u> <u>Depth</u>	Parameter	<u>PAL</u> (mg/kg)	<u>Result</u> (mg/kg)	<u>Final</u> <u>Flag</u>
B24-001-SB	1	Arsenic	3	3.3	
D24.002.5D	1	Arsenic	3	12.1	
B24-003-SB	4	Arsenic	3	7.6	
Electrical B24-004-SB	5	Manganese	26,000	26,200	
Sub-Stations	4	Chromium VI	6.3	6.4	J-
(& HC W W I F) B24-003-3B	4	Manganese	26,000	28,200	
P24 006 SP	1	Arsenic	3	15.2	
B24-000-3B	4	Arsenic	3	6.1	
	1	Manganese	26,000	32,500	
P24 007 SP	1	Thallium	12	16.9	
Caustic Solution B24-007-SB	5	Arsenic	3	7.3	
Tanks	5	Benzo[a]pyrene	2.1	3.7	
D 24,009, SD	1	Arsenic	3	4.7	
B24-008-5B	5	Manganese	26,000	29,600	
Control Building/	1.5	Manganese	26,000	32,400	
Polymer Storage B24-009-SB	5	Arsenic	3	11	
Tank/White Date and GD	1	Manganese	26,000	27,100	
Chemical Powder B24-010-SB	5	Arsenic	3	4	
	1	Arsenic	3	8.4	
Sodium B24-011-SB	4	Arsenic	3	9.4	
Hydrosulfide Tank	8	Arsenic	3	5.8	
B24-012-SB	10	Arsenic	3	8.9	
	1	Manganese	26,000	32,800	
Sulfuric Acid Tank B24-013-SB	5	Arsenic	3	3.1	
B24-014-SB	1	Manganese	26,000	27,400	
Former Oil B24-015-SB	1	Arsenic	3	12.3	
Aboveground	1	Arsenic	3	4.1	
Storage Tank B24-016-SB	1	Benzo[a]pvrene	2.1	2.3	
B24-017-SB	5	Arsenic	3	4.2	
B24-018-SB	5	Manganese	26,000	26,600	
Thickener Tanks	1	Manganese	26,000	26,800	
B24-020-SB	8	Arsenic	3	24	
	8	Lead	800	1.050	
	1	Manganese	26,000	33.300	
B24-021-SB	5	Manganese	26,000	36.000	
Sea Container/	5	Thallium	12	13.8	
Chemical Storage	1	Arsenic	3	5.4	
B24-022-SB	1	Benzo[a]pyrene	2.1	2.3	
	5	Manganese	26.000	26.700	
Trailer/	1	Arsenic	3	35	
Equipment B24-023-SB	5	Arsenic	3	3.8	
Storage R24-024-SR	5	Manganese	26 000	51 900	

Table 9 - Parcel B24Soil PAL Exceedances for Specific Targets

Target Feature	Boring ID	<u>Sample</u> <u>Depth</u>	Parameter	arameter PAL (mg/kg) Result (mg/kg)		<u>Final</u> <u>Flag</u>
		5	Arsenic	ter PAL (mg/kg) Result (mg/kg) Fi FI ic 3 9.3 ic ic 3 5.4 ic ic 3 9.2 ic ic 3 12 ic ic 3 4.4 ese ese 26,000 30,700 im ic 3 12.7 im ic 3 12.7 im or 3 12.3 im ic 3 12.3 im or 3 12.3 im or<		
~ 4	B24-025-SB	10	Arsenic	3	5.4	
Settling		15	Arsenic	3	4.9	
Basin # 2/		1	Arsenic	3	9.2	
Fill Material	B24-026-SB	5	Arsenic	3	12	
		10	Arsenic	3	6	
	B24-027-SB	5	Benzo[a]pyrene	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
		1	Arsenic	3	4.4	
Emergency Detention Basin	B24-028-SB	5	Manganese	26,000	30,700	
Detention Basin		5	Thallium	12	17.1	
Detention Basin	D24.020 CD	1	Arsenic	3	37	
	B24-029-SB	9	Arsenic	3	25.6	
	D24.020.0D	1	Arsenic	3 3 3 3 3 1 3 1 <t< td=""><td>5.6</td><td></td></t<>	5.6	
	B24-030-SB	9	Arsenic	3	4.3	
Sludge Filter		1.5	Arsenic	3	12.7	
Cake Area	B24-031-SB	1.5	Benzo[a]pyrene	2	3	
		1.5	Lead	800	1,300	
Settling Basin # 2/ Fill Material Emergency Detention Basin Sludge Filter Cake Area Drip Leg #20 Bear Creek Shoreline Settling Basin # 3	D24 022 SD	1	Arsenic	3	123	
		1	Benzo[a]pyrene	2.1	2.2	
		5	Arsenic	3	29.6	
	B24-032-SB	5	Lead	800	1,280	
		5	Oil & Grease	6,200	32,200	
Drip Leg #20		10	Arsenic	3	3.5	
		1	Arsenic	3	11.3	
	D24 022 SD	1	Benzo[a]pyrene	2.1	3.4	
Drip Leg #20	D24-055-5D	5	Arsenic	3	8	
		10	Arsenic	3	13	
		1	Arsenic	3	4.2	
	B24-035-SB	4	4 Manganese		39,500	
Bear Creek		4	Thallium	12	13	
Shoreline		1	Arsenic	3	16	
Shoreline	B24-036-SB	8	Arsenic	3	5	
		10	Arsenic	3	5.2	
Settling		1	Arsenic	3	6	
		8	Oil & Grease	6,200	14,900	
Basin # 2	B24-037-SB	10	Arsenic	3	3	
Fill Material Emergency Detention Basin Sludge Filter Cake Area Drip Leg #20 Bear Creek Shoreline Settling Basin # 3		10	Oil & Grease	6,200	19,200	
Settling Basin # 2/ Fill Material Emergency Detention Basin Sludge Filter Cake Area Drip Leg #20 Bear Creek Shoreline Settling Basin # 3		12	Arsenic	3	3.9	

J-: The positive result for this analyte is a quantitative estimate but may be biased low.

Table 10 - Parcel B24 Summary of Organics Detected in Groundwater

Dammatan	I Luita	DAI	B24-001-PZ*	B24-003-PZ*	B24-027-PZ	B24-034-PZ	B24-035-PZ	B24-036-PZ*	TM02-PZM009*	TM03-PZM004*
Parameter	Units	PAL	5/1/2020	5/1/2020	4/29/2020	4/29/2020	4/29/2020	5/1/2020	9/17/2020	8/6/2020
Volatile Organic Compounds										
2-Butanone (MEK)	μg/L	5,600	10 U	10 U	10 U	5.1 J	10 U	10 U	10 U	10 U
2-Hexanone	μg/L	38	10 U	10 U	10 U	1.4 J	10 U	10 U	10 U	10 U
4-Methyl-2-pentanone (MIBK)	μg/L	1,200	10 U	10 U	10 U	3.3 J	10 U	10 U	10 U	10 U
Acetone	μg/L	14,000	10 U	10 U	10 U	15.3	10 U	10 U	7.8 J	10 U
Benzene	μg/L	5	1 U	1 U	1 U	1 U	1 U	1 U	5.7	1 U
Carbon disulfide	μg/L	810	1 U	1 U	1 U	1 U	1 U	0.5 J	1 U	1 U
Methyl Acetate	μg/L	20,000	5 U	5 U	5 U	1.1 J	5 U	5 U	5 U	5 U
Toluene	μg/L	1,000	1 U	1 U	1 U	118	1 U	0.46 J	3.1	1 U
Xylenes	μg/L	10,000	3 U	3 U	3 U	3 U	3 U	3 U	6.4	3 U
Semi-Volatile Organic Compounds^										
1,1-Biphenyl	μg/L	0.83	0.97 U	0.98 U	0.99 U	1 U	1 U	0.99 U	1.3	0.64 J
2,3,4,6-Tetrachlorophenol	μg/L	240	0.97 U	0.98 U	0.99 U	0.31 J	1 U	0.99 U	0.98 U	0.98 U
2,4-Dimethylphenol	μg/L	360	0.4 J	0.98 U	0.99 U	304	1 U	0.99 U	34.7	0.85 J
2-Chloronaphthalene	μg/L	750	0.97 U	0.98 U	0.99 U	5.4	1 U	0.99 U	4	0.98 U
2-Methylnaphthalene	μg/L	36	0.097 U	0.057 J	0.099 U	0.37 J	0.099 U	0.1	4.6	2
2-Methylphenol	μg/L	930	0.97 U	0.98 U	0.99 U	1 U	1 U	0.99 U	1.5	0.98 U
3&4-Methylphenol(m&p Cresol)	μg/L	930	1.9 U	2 U	2 U	1,590	2 U	2 U	14.9	2 U
Acenaphthene	μg/L	530	0.17	0.13	0.047 J	1 U	0.099 U	0.4	2.2	2.4
Acenaphthylene	μg/L	530	0.097 U	0.098 U	0.039 J	1 U	0.099 U	0.099 U	0.85	1.1
Acetophenone	μg/L	1,900	0.97 U	0.98 U	0.99 U	1 U	1 U	0.99 U	0.81 J	0.98 U
Anthracene	μg/L	1,800	0.082 J	0.09 J	0.055 J	1 U	0.099 U	0.038 J	0.6	1
Benz[a]anthracene	μg/L	0.03	0.097 U	0.098 U	0.099 U	1 U	0.099 U	0.099 U	0.077 J	0.98 U
Benzo[a]pyrene	μg/L	0.2	0.033 J	0.098 U	0.099 U	1 U	0.02 J	0.099 U	0.012 J	0.98 U
Benzo[b]fluoranthene	μg/L	0.25	0.061 J	0.098 U	0.099 U	1 U	0.038 J	0.099 U	0.098 U	0.98 U
Benzo[k]fluoranthene	μg/L	2.5	0.054 J	0.098 U	0.099 U	1 U	0.03 J	0.099 U	0.098 U	0.98 U
bis(2-Ethylhexyl)phthalate	μg/L	6	0.97 U	0.98 U	0.99 U	0.99 J	1 U	0.99 U	0.98 U	0.98 U
Carbazole	μg/L		0.97 U	0.98 U	0.99 U	0.31 J	1 U	0.99 U	4.5	5.3
Chrysene	μg/L	25	0.043 J	0.098 U	0.099 U	1 U	0.099 U	0.099 U	0.074 J	0.98 U
Di-n-butylphthalate	μg/L	900	0.97 U	0.98 U	0.99 U	1.5	0.45 B	0.38 J	0.98 U	0.98 U
Di-n-ocytlphthalate	μg/L	200	0.97 U	0.98 U	0.99 U	1 UJ	1 U	0.99 U	0.98 U	0.88 J
Fluoranthene	μg/L	800	0.21	0.098 U	0.13	1 U	0.099 U	0.12	1.2	2.9
Fluorene	μg/L	290	0.098	0.19	0.039 J	1 U	0.099 U	0.23	2.4	3.3
Naphthalene	μg/L	0.12	0.038 J	0.06 J	0.099 U	1.9	0.099 U	0.94	56.8	15.6
Nitrobenzene	μg/L	0.14	0.97 U	0.98 U	0.99 U	20.4 U	1 U	0.4 J	9.8 U	0.98 U
Phenanthrene	μg/L		0.13	0.31	0.099 U	1 U	0.099 U	0.43	4	5.4
Phenol	μg/L	5,800	0.97 U	0.98 U	0.99 U	163	1 U	0.99 U	0.98 U	0.98 U
Pyrene	μg/L	120	0.29	0.13	0.13	1 U	0.099 U	0.073 J	0.81	2.4
TPH/Oil & Grease										
Diesel Range Organics	μg/L	47	266	152	378 J	8,200 J	99.5 UJ	327	1,770	636
Oil & Grease	μg/L	47	4,750 U	4,750 U	4,750 U	3,800 J	4,750 U	4,750 U	4,750 U	1,000 J

Detections in bold

Values in red indicate exceedances of the Project Action Limit (PAL) *Indicates non-validated data ^PAH compounds were analyzed via SIM

Highlighted PAH compounds were not analyzed via SIM

U: This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit. UJ: This analyte was not detected in the sample. The actual quantitation/detection limit may be higher than reported. B: The analyte was not detected substantially above the level of the associated method blank or field blank. J: The positive result reported for this analyte is a quantitative estimate.

Table 11 - Parcel B24Summary of Inorganics Detected in Groundwater

Parameter	Unite	DAI	B24-001-PZ*	B24-003-PZ*	B24-027-PZ	B24-034-PZ	B24-035-PZ	B24-036-PZ*	TM02-PZM009*	TM03-PZM004*
Parameter	Units	PAL	5/1/2020	5/1/2020	4/29/2020	4/29/2020	4/29/2020	5/1/2020	9/17/2020	8/6/2020
Total Metals										
Aluminum	μg/L	20,000	N/A	N/A	N/A	N/A	N/A	N/A	89.2	259
Arsenic	μg/L	10	N/A	N/A	N/A	N/A	N/A	N/A	5 U	3.2 J
Barium	μg/L	2,000	N/A	N/A	N/A	N/A	N/A	N/A	64.2	34.4
Chromium	μg/L	100	N/A	N/A	N/A	N/A	N/A	N/A	1 J	10.6
Chromium VI	μg/L	0.035	N/A	N/A	N/A	N/A	N/A	N/A	N/A	11
Copper	μg/L	1,300	N/A	N/A	N/A	N/A	N/A	N/A	2.7 J	5 U
Iron	μg/L	14,000	N/A	N/A	N/A	N/A	N/A	N/A	70 U	212
Manganese	μg/L	430	N/A	N/A	N/A	N/A	N/A	N/A	5 U	13.3
Nickel	μg/L	390	N/A	N/A	N/A	N/A	N/A	N/A	2.6 J	10 U
Vanadium	μg/L	86	N/A	N/A	N/A	N/A	N/A	N/A	61.3	188
Zinc	μg/L	6,000	N/A	N/A	N/A	N/A	N/A	N/A	10 U	5.6 J
Dissolved Metals										
Aluminum, Dissolved	μg/L	20,000	298	50 U	131	164	34.5 J	160	59.4	285
Arsenic, Dissolved	μg/L	10	5 U	5 U	5 U	6.9	5 U	5 U	5 U	5 U
Barium, Dissolved	μg/L	2,000	60.1	59.1	129	32.2	46.4	82.2	61.7	39
Cadmium, Dissolved	μg/L	5	3 U	0.39 J	3 U	3 U	0.91 J	3 U	3 U	3 U
Chromium VI, Dissolved	μg/L	0.035	8.4 J	10 U	23.6	10 U	3.8 J	100 U	10 U	13.4
Chromium, Dissolved	μg/L	100	14.2	0.48 B	30.4	30.8	5	0.91 B	0.99 J	17
Cobalt, Dissolved	μg/L	6	5 U	5 U	5 U	1.4 J	10 U	5 U	5 U	5 U
Iron, Dissolved	μg/L	14,000	70 U	252	70 U	65.2 J	70 U	70 U	70 U	64.3 J
Manganese, Dissolved	μg/L	430	1.3 J	285	5 U	2.7 J	5 U	5 U	5 U	1.6 J
Nickel, Dissolved	μg/L	390	10 U	10 U	10 U	7.5 J	10 U	10 U	2.5 J	10 U
Vanadium, Dissolved	μg/L	86	154	5 U	27.4	312	112	3.8 J	57.6	208
Zinc, Dissolved	μg/L	6,000	10 U	10 U	10 U	3.6 J	10 U	10 U	10 U	10 U
Other										
Available Cyanide	μg/L	200	5 U	5 U	2 J	9	4 J	5 U	N/A	N/A
Amenable Cyanide	μg/L	200	N/A	N/A	N/A	N/A	N/A	N/A	16	14
Total Cyanide	μg/L	200	5 J	10 U	4.9 J	24	7.3 J	10 U	26 / 16.2	87 / 47.8

Detections in bold

Values in red indicate exceedances of the Project Action Limit (PAL)

*Indicates non-validated data

N/A indicates that the parameter was not analyzed for this sample

Total Cyanide was run by both Pace and Alpha Laboratories

U: This analyte was not detected in the sample. The numeric value represents the sample quantitation/detection limit.

B: The analyte was not detected substantially above the level of the associated method blank or field blank.

J: The positive result reported for this analyte is a quantitative estimate.

Table 12 - Parcel B24Cumulative Vapor Intrusion Critieria Comparison

				B24-001-PZ* 5/1/2020		B24-003-PZ* 5/1/2020		B24-027-PZ 4/29/2020		B24-034-PZ 4/29/2020	
Parameter	Туре	Organ Systems	VI Screening Criteria	Conc. ug/L	Risk/ Hazard						
Cancer Risk											
Naphthalene	SVOC		200	0.038 J	1.9E-09	0.06 J	3.0E-09	0.099 U	0	1.9	9.5E-08
Nitrobenzene	SVOC		3,100	0.97 U	0	0.98 U	0	0.99 U	0	20.4 U	0
Benzene	VOC		69	1 U	0	1 U	0	1 U	0	1 U	0
	Cum	ulative Vapor	Intrusion Risk		2E-09		3E-09		0		1E-07
Non-Cancer Hazard	Non-Cancer Hazard										
Cumul	ative Vapor I	ntrusion Non-O	Cancer Hazard		0		0		0		0

			B24-035-PZ 4/29/2020		B24-036-PZ* 5/1/2020		TM02-PZM009* 9/17/2020		TM03-PZM004* 8/6/2020		
Parameter	Туре	Organ Systems	VI Screening Criteria	Conc. ug/L	Risk/ Hazard	Conc. ug/L	Risk/ Hazard	Conc. ug/L	Risk/ Hazard	Conc. ug/L	Risk/ Hazard
Cancer Risk											
Naphthalene	SVOC		200	0.099 U	0	0.94	4.7E-08	56.8	2.8E-06	15.6	7.8E-07
Nitrobenzene	SVOC		3,100	1 U	0	0.4 J	1.3E-09	9.8 U	0	0.98 U	0
Benzene	VOC		69	1 U	0	1 U	0	5.7	8.3E-07	1 U	0
	Cum	ulative Vapor	Intrusion Risk		0		5E-08		4E-06		8E-07
Non-Cancer Hazard	Non-Cancer Hazard										
Cumula	tive Vapor II	ntrusion Non-O	Cancer Hazard		0		0		0		0

Highlighted values indicate exceedances of the cumulative vapor intrusion criteria:

TCR>1E-05 THI>1

Conc. = Concentration

*Indicates non-validated data

U: This analyte was not detected in the sample. The numeric value represents the sample quantitaion/detection limit.

J: The positive result reported for this analyte is a quantitive estimate.
Sample ID	<u>Parameter</u>	<u>Result</u> (mg/kg)	<u>Flag</u>	<u>PAL</u> (mg/kg)	Exceeds PAL?
	2,3,4,6-Tetrachlorophenol	0.071	R	25,000	no
	2,4,5-Trichlorophenol	0.18	R	82,000	no
	2,4,6-Trichlorophenol	0.071	R	210	no
	2,4-Dichlorophenol	0.071	R	2,500	no
	2,4-Dimethylphenol	0.071	R	16,000	no
B24-002-SB-4	2,4-Dinitrophenol	0.18	R	1,600	no
	2-Chlorophenol	0.071	R	5,800	no
	2-Methylphenol	0.071	R	41,000	no
	3&4-Methylphenol(m&p Cresol)	0.14	R	41,000	no
	Pentachlorophenol	0.18	R	4	no
	Phenol	0.071	R	250,000	no
	2,3,4,6-Tetrachlorophenol	0.073	R	25,000	no
	2,4,5-Trichlorophenol	0.18	R	82,000	no
	2,4,6-Trichlorophenol	0.073	R	210	no
	2,4-Dichlorophenol	0.073	R	2,500	no
	2,4-Dimethylphenol	0.073	R	16,000	no
B24-005-SB-4	2,4-Dinitrophenol	0.18	R	1,600	no
	2-Chlorophenol	0.073	R	5,800	no
	2-Methylphenol	0.073	R	41,000	no
	3&4-Methylphenol(m&p Cresol)	0.15	R	41,000	no
	Pentachlorophenol	0.18	R	4	no
	Phenol	0.073	R	250,000	no
B24-008-SB-1	Chromium VI	1.1	R	6.3	no
B24-009-SB-1.5	1,4-Dioxane	0.14	R	24	no
B24-009-SB-5	Chromium VI	1.1	R	6.3	no
B24-011-SB-1	Chromium VI	1.1	R	6.3	no
D24 011 CD 4	1,4-Dioxane	0.1	R	24	no
B24-011-SB-4	Chromium VI	1.1	R	6.3	no
	1,1,2,2-Tetrachloroethane	0.0053	R	2.7	no
B24-012-SB-8	1,4-Dioxane	0.11	R	24	no
	Chromium VI	1.3	R	6.3	no
B24-017-SB-1	Chromium VI	1.1	R	6.3	no

Table 13 - Parcel B24Rejected Analytical Soil Results

Sample ID	Parameter	<u>Result</u> (mg/kg)	<u>Flag</u>	PAL (mg/kg)	Exceeds PAL?
	2,3,4,6-Tetrachlorophenol	0.073	R	25,000	no
	2,4,5-Trichlorophenol	0.18	R	82,000	no
	2,4,6-Trichlorophenol	0.073	R	210	no
	2,4-Dichlorophenol	0.073	R	2,500	no
	2,4-Dimethylphenol	0.073	R	16,000	no
B24-018-SB-5	2,4-Dinitrophenol	0.18	R	1,600	no
	2-Chlorophenol	0.073	R	5,800	no
	2-Methylphenol	0.073	R	41,000	no
	3&4-Methylphenol(m&p Cresol)	0.15	R	41,000	no
	Pentachlorophenol	0.18	R	4	no
	Phenol	0.073	R	250,000	no
	2,3,4,6-Tetrachlorophenol	0.072	R	25,000	no
	2,4,5-Trichlorophenol	0.18	R	82,000	no
	2,4,6-Trichlorophenol	0.072	R	210	no
	2,4-Dichlorophenol	0.072	R	2,500	no
	2,4-Dimethylphenol	0.072	R	16,000	no
B24-019-SB-1	2,4-Dinitrophenol	0.18	R	1,600	no
	2-Chlorophenol	0.072	R	5,800	no
	2-Methylphenol	0.072	R	41,000	no
	3&4-Methylphenol(m&p Cresol)	0.14	R	41,000	no
	Pentachlorophenol	0.18	R	4	no
	Phenol	0.072	R	250,000	no
B24-020-SB-8	1,4-Dioxane	0.088	R	24	no
B24-029-SB-1	Chromium VI	1.1	R	6.3	no
D24 020 CD 0	1,4-Dioxane	0.11	R	24	no
D24-029-9B-9	Chromium VI	1.1	R	6.3	no
B24-030-SB-9	1,4-Dioxane	0.12	R	24	no

Table 13 - Parcel B24Rejected Analytical Soil Results

n n n n n n n n

"

"

"

APPENDIX A

11

- " "

Source Area/ Description	REC & Finding/ SWMU/AOC	Figure or Drawing of Reference	Rationale	Number of Locations	Sample Locations	Boring Depth	Sample Depth	Analytical Parameters: Soil Samples
Electrical Sub-Stations (& HCWWTP)	[†] REC 7A-7B, Findings 165-172	Site Visit, Aerial, Drawings 5038, 5138, 5538	Investigate potential impacts related to electric sub-stations in the vicinity of the HCWWTP (potential leaks or releases).	6	B24-001 through B24-006	Total depth of 20 feet or groundwater.	0-1', 4-5', 9-10' bgs. 4-5' interval may be adjusted in the field based on observations or field screening.	VOC^, SVOC, Metals, DRO/GRO, O&G, PCBs (0-1')
Caustic Solution Tanks		Drawing 5139	Investigate potential impacts related to the caustic solution tanks associated with wastewater treatment processes (potential leaks or releases).	2	B24-007 and B24-008	Total depth of 20 feet or groundwater.	0-1', 4-5', 9-10' bgs. 4-5' interval may be adjusted in the field based on observations or field screening.	VOC [^] , SVOC, Metals, DRO/GRO, O&G, PCBs (0-1')
Control Building/ Polymer Storage Tank/White Chemical Powder	[†] REC 7A-7B, Findings 165-172	Site Visit, Drawing 5139	Investigate potential impacts related to the control building and polymer storage tank (potential leaks or releases) and the wastewater treatment chemical powder found on the ground.	2	B24-009 and B24-010	Total depth of 20 feet or groundwater.	0-1', 4-5', 9-10' bgs. 4-5' interval may be adjusted in the field based on observations or field screening.	VOC^, SVOC, Metals, DRO/GRO, O&G, PCBs (0-1')
Sodium Hydrosulfide Tank		Site Visit, Aerial	Investigate potential impacts related to the sodium hydrosulfide tank (potential leaks or releases).	2	B24-011 and B24-012	Total depth of 20 feet or groundwater.	0-1', 4-5', 9-10' bgs. 4-5' interval may be adjusted in the field based on observations or field screening.	VOC^, SVOC, Metals, DRO/GRO, O&G, PCBs (0-1')
Sulfuric Acid Tank	[†] REC 7A-7B, Findings 165-172	Site Visit, Aerial	Investigate potential impacts related to the sulfuric acid tank (potential leaks or releases).	2	B24-013 and B24-014	Total depth of 20 feet or groundwater.	0-1', 4-5', 9-10' bgs. 4-5' interval may be adjusted in the field based on observations or field screening.	VOC [^] , SVOC, Metals, DRO/GRO, O&G, PCBs (0-1')

			140101	son bumping	, Bailinia y			
Source Area/ Description	REC & Finding/ SWMU/AOC	Figure or Drawing of Reference	Rationale	Number of Locations	Sample Locations	Boring Depth	Sample Depth	Analytical Parameters: Soil Samples
Former Oil Aboveground Storage Tank		Drawings 5038, 5138, 5538	Investigate potential impacts related to the former oil AST and associated pump (potential leaks or releases).	2	B24-015 and B24-016	Total depth of 20 feet or groundwater.	 0-1', 4-5', 9-10' bgs. 4-5' interval may be adjusted in the field based on observations or field screening. 	VOC^, SVOC, Metals, DRO/GRO, O&G, PCBs (0-1')
Thickener Tanks	[†] REC 7A-7B, Findings 165-172	Drawings 5038, 5138, 5538	Investigate potential impacts related to wastewater thickeners (potential leaks or releases).	4	B24-017 through B24-020	Total depth of 20 feet or groundwater.	0-1', 4-5', 9-10' bgs. 4-5' interval may be adjusted in the field based on observations or field screening.	VOC^, SVOC, Metals, DRO/GRO, O&G, PCBs (0-1')
Sea Container/ Chemical Storage		Site Visit, Aerial	Investigate potential impacts related to chemical storage tanks located outside of a sea container storage unit (potential leaks or releases).	2	B24-021 and B24-022	Total depth of 20 feet or groundwater.	 0-1', 4-5', 9-10' bgs. 4-5' interval may be adjusted in the field based on observations or field screening. 	VOC^, SVOC, Metals, DRO/GRO, O&G, PCBs (0-1')
Trailer/ Equipment Storage		Site Visit, Aerial	Investigate potential impacts related to equipment stored outdoors on-site (potential leaks or releases).	2	B24-023 and B24-024	Total depth of 20 feet or groundwater.	0-1', 4-5', 9-10' bgs. 4-5' interval may be adjusted in the field based on observations or field screening.	VOC^, SVOC, Metals, DRO/GRO, O&G, PCBs (0-1')
Settling Basin # 2/ Fill Material	[†] REC 7A-7B, Findings 165-172	Drawings 5038, 5138, 5538	Investigate backfilled area of settling basin # 2 for soil contamination from treatment activities and backfilling (potential leaks or releases).	2	B24-025 and B24-026	Total depth of 20 feet.	0-1', 4-5', 9-10', 17-18' bgs. 4-5' interval may be adjusted in the field based on observations or field screening.	VOC^, SVOC, Metals, DRO/GRO, O&G, PCBs (0-1')

Table 1	- Soil	Sampling	Summarv
	~ ~ ~		is contracted y

Source Area/ Description	REC & Finding/ SWMU/AOC	Figure or Drawing of Reference	Rationale	Number of Locations	Sample Locations	Boring Depth	Sample Depth	Analytical Parameters: Soil Samples
Emergency Detention Basin	REC 7C, Finding 173	Site Visit, Aerial, Industrial Water Utility Drawings	Investigate potential impacts related to the use of the emergency detention basin (potential leaks or releases), which served as a bypass system for the HCWWTP to be used in the event of treatment upsets. The detention basin includes a composite liner; therefore, soil borings are proposed at locations surrounding the basin.	3	B24-027 through B24-029	Total depth of 20 feet or groundwater.	0-1', 4-5', 9-10' bgs. 4-5' interval may be adjusted in the field based on observations or field screening.	VOC^, SVOC, Metals, DRO/GRO, O&G, PCBs (0-1')
Sludge Filter Cake Area	[†] REC 7A-7B, Findings 165-172	Site Visit, Aerial	Investigate potential impacts related to the sludge collection boxes which handle sludge filter cake from wastewater treatment operations (potential leaks or releases).	2	B24-030 and B24-031	Total depth of 20 feet or groundwater.	0-1', 4-5', 9-10' bgs. 4-5' interval may be adjusted in the field based on observations or field screening.	VOC [^] , SVOC, Metals, DRO/GRO, O&G, PCBs (0-1')
Drip Leg #20		Drip Leg Drawing 5887	Coke oven gas condensate was removed from the gas pipelines at drip legs located throughout the distribution system. The condensate was typically discharged to drums, although it is possible some spilled out of the drums and on to the ground.	2	B24-032 and B24-033	Total depth of 20 feet or groundwater.	0-1', 4-5', 9-10' bgs. 4-5' interval may be adjusted in the field based on observations or field screening.	VOC^, SVOC, Metals, DRO/GRO, O&G, PCBs (0-1')
Parcel B14 NAPL Detection Area		MDE Request	Investigate impacts from NAPL area detected in piezometer B14-037-PZ during Parcel B14 NAPL Delineation activities.	1	B24-034	Total depth of 20 feet or groundwater.	0-1', 4-5', 9-10' bgs. 4-5' interval may be adjusted in the field based on observations or field screening.	VOC^, SVOC, Metals, DRO/GRO, O&G, PCBs (0-1')
Bear Creek Shoreline		MDE Request	Investigate the migration of potential contaminants within the site towards the Bear Creek shoreline.	2	B24-035 and B24-036	Total depth of 20 feet or groundwater.	0-1', 4-5', 9-10' bgs. 4-5' interval may be adjusted in the field based on observations or field screening.	VOC [^] , SVOC, Metals, DRO/GRO, O&G, PCBs (0-1')

Table 1 - Soil Sampling Summary									
Source Area/ Description	REC & Finding/ SWMU/AOC	Figure or Drawing of Reference	Rationale	Number of Locations	Sample Locations	Boring Depth	Sample Depth	Analytical Parameters: Soil Samples	
Settling Basin # 3	[†] REC 7A-7B, Findings 165-172	MDE Request	Investigate area adjacent to settling basin # 3 for soil contamination from treatment activities and sludge storage (potential leaks or releases).	1	B24-037	Total depth of 20 feet.	0-1', 4-5', 9-10', 17-18' bgs. 4-5' interval may be adjusted in the field based on observations or field screening.	VOC^, SVOC, Metals, DRO/GRO, O&G, PCBs (0-1')	
			Total:	37					
Soil Borings Sampl	ling Density Req	uirements (fi	rom Worksheet 17 - Sampling Design and		VOCs - Volatile Organic Compounds (Target Compound List)				
No Engineered Barrier (16-40 acres): 1 boring per 1.5 acres with no less than 15 borings. ^VC							^VOCs are only collected if the PID reading exceeds 10 ppm		
Engineered Barrier	r (N/A)					SVOCs - Semivolatil	e Organic Compounds (Target	Compound List)	

No Engineered Barrier (25.7 acres) = **18 borings required, 37 completed** Includes Building Footprints (1.00 acres)

O&G - Oil and Grease

Metals - (Target Analyte List plus Hexavalent Chromium and Cyanide)

DRO/GRO - Diesel Range Organics/Gasoline Range Organics

PCBs - Polychlorinated Biphenyls

bgs - Below Ground Surface

[†]REC 7A-7B and Findings 165-172 (various SWMUs) are targetted by multiple soil borings which additionally provide general sampling coverage of the HCWWTP.

Source Area/ Description	REC & Finding/ SWMU/AOC	Figure or Drawing of Reference	Condition of Existing Well	Number of Locations	Sample Locations	Boring Depth	Screen Interval	Analytical Parameters: Groundwater Samples
Electrical Sub-Station (& HCWWTP)	REC 7A-7B, Findings 165-172	Drawings 5038, 5138, 5538	N/A	2	B24-001 and B24-003	Total depth of 7 feet below water table.	7 feet below water table to 3 feet above water table.	VOC, SVOC, Metals (dissolved), Cyanide (total/available), O&G, DRO/GRO
Emergency Detention Basin	REC 7C, Finding 173	Site Visit, Aerial, Industrial Water Utility Drawings	N/A	1	B24-027	Total depth of 7 feet below water table.	7 feet below water table to 3 feet above water table.	VOC, SVOC, Metals (dissolved), Cyanide (total/available), O&G, DRO/GRO
Parcel B14 NAPL Detection		MDE Request	N/A	1	B24-034	Total depth of 7 feet below water table.	7 feet below water table to 3 feet above water table.	VOC, SVOC, Metals (dissolved), Cyanide (total/available), O&G, DRO/GRO
Bear Creek Shoreline		MDE Request	N/A	2	B24-035 and B24-036	Total depth of 7 feet below water table.	7 feet below water table to 3 feet above water table.	VOC, SVOC, Metals (dissolved), Cyanide (total/available), O&G, DRO/GRO

Source Area/ Description	REC & Finding/ SWMU/AOC	Figure or Drawing of Reference	Condition of Existing Well	Number of Locations	Sample Locations	Boring Depth	Screen Interval	Analytical Parameters: Groundwater Samples
Upgradient from TMC (supplemental)		CBF Request	Good Condition	2	TM02-PZM009 and TM03-PZM004	21 feet bgs and 15 feet bgs	11 to 21 feet bgs and 5 to 15 feet bgs	VOC, SVOC, Metals (total/dissolved), Cyanide (total/amenable), O&G, DRO/GRO
			Total:	8				

Field measurements include pH, DO, ORP, conductivity, temperature.

VOCs - Volatile Organic Compounds (Target Compound List)

SVOCs - Semivolatile Organic Compounds (Target Compound List)

Metals - (Target Analyte List plus Hexavalent Chromium)

O&G - Oil and Grease

DRO/GRO - Diesel Range Organics/Gasoline Range Organics

bgs - Below Ground Surface

n n n n n n n n n

"

"

"

APPENDIX B

"

- "

T	Ş	ARN	A Group	LLC	Client ARM Project No. Project Description Site Location ARM Representative	: V¦æå^] [ðj ơ͡0ট(æ) æ& : 20010224 : Sparrows Point - Parcel B24 : Sparrows Point, MD : L. Perrin	Date		: 04/17/2020		
E	Boring	g ID: E	324-002-S	B	Checked by Drilling Company Driller Drilling Equipment	: M. Replogle, E.I.T. : GSI : D. Marchese : Geoprobe 7822DT	North Eastii	ing (US ft) ng (US ft)	: 568669.94 : 1457108.02		
			(page 1	of 1)				1	1		
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESC	RIPTION		nscs	REMARKS		
0—		0.0	B24-002-SB-1	(0-0.1') S brown, dr (0.1-0.5') no plastic	ILT with SAND and C y, no plasticity, no co SAND with trace SIL ity, no cohesion	RGANIC MATTER, soft, dar hesion T, very fine to fine, yellow, dr	ſk ſy,	SW			
-	100	0.1		(0.5-4') N BRICK G plasticity,	ON-NATIVE SAND a RAVEL, fine to coars no cohesion	nd SLAG GRAVEL with trace e, dark brown, dry, no		No water encountered			
_	100	1.7						SW/GW			
_		0.3	B24-002-SB-4								
5—				End of Bo	oring						
_											
_											
-											
-											
10—											
Total Bo	Total Borehole Depth: 4' bgs due to multiple refusals.										

Bo	oring I	ARN Engi D: B2	A Group incers and Scie 24-003-SB	o LLC ntists	Client: V!æÅ^] [# of0fa) cakARM Project No.: 20010224Project Description: Sparrows Point - Parcel B24Site Location: Sparrows Point, MDARM Representative: L. PerrinChecked by: M. Replogle, E.I.T.Drilling Company: GSIDriller: D. MarcheseDrilling Equipment: Geoprobe 7822DT				Sc Pie Ca Bc Ri: No Ea 48 Tra	il Boring I ezometer using/Rise orehole Dia ser/Screen orthing (US esting (US -Hr DTW ace NAPL	nstallation Date Installation Date r/Screen Type ameter n Diameter S ft) ft) detected at 0 hou	: 04/16/2020 : 04/16/2020 : PVC : 2.25" : 1" : 568561.39 : 1456819.39 : 11.56' TOC
	1		(page 1	of 1)	0 1 1	•	1		No	LNAPL o	or DNAPL detected	d at 48 hours
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESCRIPTION	1	uscs		Π			REMARKS
0-		-	B24-003-SB-1	(0-3.5') S and ROO	LAG with some SILT TS at the surface, SA	SAND, AND and			· · · ·		VC Riser	
-	80	1.9 22.6		. GRAVEL brown, dr	-sized, medium, very y, no plasticity, no co	dark hesion	SW/GP			Ben	tonite Seal	
-		44.0										
-		11.2	B24-003-SB-4	(3.5-9.3') SAND-siz	SLAG GRAVEL with zed SLAG, dense, lig	some nt gray						
5-		0.0		at 4' bgs	e brown, very moist ti then wet at 8' bgs, no no cohesion							
_		-										
		-					GW			Son	d Pook	
	60	0.9								- San	u Fack	
-		4.2						-				Wet at 8' bgs
-		2.1		(9.3-11')	CLAY, soft to firm, lig	ht brown		-				
10-		-		low plasti	ish yellow mottling, v city, cohesive	ery moist,	CL				VC Screen	
-		-		(11-13.7') firm, light yellow mo) CLAY with SAND, s grayish brown with ro ottling, very moist, lov	oft to eddish v		-				
_	60	0.0		plasticity,	cohesive		CL					
		0.0		(13 7 14)		ad	00/00	-				
_		0.0		CLAYEY	GRAVEL, fine, loose vn, wet, no plasticity,	, very no	CL	-		End	Can	sheen from 13.7 to 14.3' bgs
15—			I	(14.3-15') firm, light yellow mo plasticity,) CLAY with SAND, s grayish brown with re ottling, very moist, lov cohesive	oft to eddish v		JL		<u> </u>	Сар	
Boring te	erminated	at 15' bo	is due to water a	nd piezomet	er installation	Riser St	tickup: 3 20'					
TOC: To DTW: D bgs: Bel	op of PVC epth to wa ow groun	casing ater d surface	, to water a			Riser: 0 Screen: Sand Pa Bentoni	- 5' bgs 5 - 15' bgs ack: 3 - 15' b te Seal: 0 - 3	[Slot S ogs [G 3' bgs	Size: Grain [Gra	0.010"] Size: WG ain Size: b	i #2] entonite chips]	

	ARM Group LLC Engineers and Scientists				Client ARM Project No. Project Description Site Location ARM Representative	: V¦æå^] [ðj ơðđạ) ය& : 20010224 : Sparrows Point - Parcel B24 : Sparrows Point, MD : L. Perrin	Date		: 04/16/2020
E	Boring	j ID: E	324-004-S	SB	Checked by Drilling Company Driller Drilling Equipment	: M. Replogle, E.I.T. : GSI : D. Marchese : Geoprobe 7822DT	North Eastir	ing (US ft) ng (US ft)	: 568682.51 : 1456853.30
			(page i						
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESC	RIPTION		USCS	REMARKS
0-		-	B24-004-SB-1	(0-7.5') N GRAVEL trace gray cohesion	ON-NATIVE SAND (\ (fine to coarse), med y and yellowish browr	very fine to coarse) with som ium, very dark brown with n, dry, no plasticity, no	e		
_		0.0							
-	80	0.0							
-		0.1						SW/GW	
5—		0.0	B24-004-SB-5						
_		-							
		0.0							
-	82	0.0		(7.5-10') NON-NA brown, m	SLAG GRAVEL (fine TIVE SAND, dense, li oist then wet at 7.8' b	to coarse) with trace ght gray and gray with trace gs, no plasticity, no cohesior	<u></u>		Wet at 7.8' bgs
-		0.0						GW	
		0.0							
10-			1	End of Bo	pring			I	L
Total Bo	orehole D	epth: 10'	bgs due to water						

		ARN Engi	A Group	LLC	Client ARM Project No. Project Description Site Location ARM Representative Chapted by	: V¦æå^] [ðj dð Ctaja) cað. : 20010224 : Sparrows Point - Parcel B24 : Sparrows Point, MD : L. Perrin	Date	ing (LIS ft)	: 04/17/2020
E	Boring	g ID: E	324-005-S (page 1	5B of 1)	Drilling Company Driller Drilling Equipment	: M. Replogie, E.I.T. : GSI : D. Marchese : Geoprobe 7822DT	Easti	ng (US ft) ng (US ft)	: 1457258.75
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESC	RIPTION		USCS	REMARKS
0-		-	B24-005-SB-1	(0-4') NO BRICK G brown, dr	N-NATIVE SAND and RAVEL, fine to coars y, no plasticity, no co	I SLAG GRAVEL with trace e, medium, dark gray and da hesion	ark		Limited amount of organics at the surface
_	80	0.1						SW/GW	No water encountered
-		0.0	B24-005-SB-4						
5—				End of Bo	bring				
_									
-									
_									
10—									
Total Bo	Drehole D	epth: 4' b	gs due to multiple	e refusals.					

M		ARN Engi	A Group ineers and Scien	LLC	Client ARM Project No. Project Description Site Location ARM Representative Checked by	: V¦æå^] [3] of0Efa3) c3& : 20010224 : Sparrows Point - Parcel B24 : Sparrows Point, MD : L. Perrin : M. Replogle, F. I.T.	Date	ing (US ft)	: 04/17/2020 : 568640 52
E	Boring	g ID: E	324-006-S (page 1	3B of 1)	Drilling Company Driller Drilling Equipment	: GSI : D. Marchese : Geoprobe 7822DT	Easti	ng (US ft)	: 1457344.78
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESC	RIPTION		USCS	REMARKS
0		-	B24-006-SB-1	(0-4') NO COBBLE plasticity,	N-NATIVE SAND and S, fine to coarse, med no cohesion	d SLAG GRAVEL with trace dium, dark brown, dry, no			Limited amount of organics at the surface
_	75	0.1						sw/gw	No water encountered
_		0.1	B24-006-SB-4						
	prehole D	epth: 4' b	gs due to multiple	End of Bo	pring				
Total Bo	orehole D	epth: 4' b	gs due to multipl	e refusals.					

E	Boring	ARN Engi	Group incers and Scient 324-007-S (page 1	The second secon	Client ARM Project No. Project Description Site Location ARM Representative Checked by Drilling Company Driller Drilling Equipment	nt : Viæå^] [ð dÓŒa) a& Date 1 Project No. : 20010224 Date act Description : Sparrows Point - Parcel B24 Date Location : Sparrows Point, MD Northing (US ft) 1 Representative : L. Perrin Northing (US ft) cked by : M. Replogle, E.I.T. Northing (US ft) ar : K. Pumphrey Easting (US ft) ar : Geoprobe 7822DT Date			: 04/21/2020 : 569084.38 : 1457699.34	
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESCRIPTION			nscs	REMARKS	
0-		0.0	B24-007-SB-1	(0-0.5') S brown, dr (0.5-1.7')	ILTY SAND, very fine y, no plasticity, no co NON-NATIVE SAND	to fine, loose to medium, hesion and SLAG GRAVEL, fine to		SM	Organics present	
_		0.0		coarse, n cohesion	ay, dry, no plasticity, no	;	SW/GW			
-				(1.7-2.3') and redd	CLAY with trace SAN ish yellow, dry, low pla	ID, very firm, grayish brown asticity, cohesive		CL		
-	90	0.0		(2.3-6.5 [°]) SLAG GF medium, no cohes	NON-NATIVE SAND RAVEL (fine to coarse brown and dark brow ion	(very fine to coarse) with e), and SAND-sized SLAG, n with gray, dry, no plasticity.	,			
		0.0								
5-		0.0	B24-007-SB-5				:	SW/GW		
		1.7								
_	83	0.6		(6.5-8') S	LAG BRICK with NOI	N-NATIVE SAND, SAND and	1			
_		0.0		yellowish plasticity,	green at 7' bgs, dry t no cohesion	hen wet at 7' bgs, no	:	SW/GW	Wet at 7' bgs	
_				End of Bo	oring					
_										
10-										
Total Bo	I orehole D	epth: 8' b	gs due to water a	and refusal.						

	Ş	ARN Engi	A Group	LLC	Client ARM Project No. Project Description Site Location ARM Representative Checked by	: V¦æå^] [ð; dðuātjan); d&, : 20010224 : Sparrows Point - Parcel B24 : Sparrows Point, MD : L. Perrin : M. Bankode, E. I.T.	Date	ing (LIS ft)	: 04/20/2020
E	Boring	JID: E	324-008-5	SB	Drilling Company Driller	: GSI : K. Pumphrev	Eastir	ng (US ft) ng (US ft)	: 1457687.67
	_		(page 1	of 1)	Drilling Equipment	: Geoprobe 7822DT			
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESC	RIPTION		USCS	REMARKS
0-				(0-0.5') S	AND with SILT, very		SW-SM	Trace rganics present	
		-	B24-008-SB-1	(0.5-6.8')	vn, dry, no plasticity, i NON-NATIVE SAND -sized with purple SI	and SLAG, SAND and AG GRAVEL at 2' bos medi	um		
_				dark brov	vn, dry, no plasticity, i	no cohesion	uni,		
_		0.6							
	82	0.7							
_		0.8						SW/GW	
-		4.6	B24-008-SB-5						
5-		-							
_		0.6							Wet at 6.8' bos
_	70	0.8		(6.8-7.7') to coarse no cohes	SLAG GRAVEL with , medium to dense, d ion	some NON-NATIVE SAND, ark brown, wet, no plasticity,	fine	GW	
-				(7.7-8.3') no plastic	BRICK GRAVEL and tity, no cohesion	COBBLES, dense, yellow, v	wet,	GW	
_		2.0		(8.3-10') plasticity,	SLAG GRAVEL, fine no cohesion	to coarse, light gray, wet, no			
		2.2						GP	
10-			<u> </u>	End of Bo	oring			I	
Total Bo	orehole D	epth: 10'	bgs due to water						

E	Boring	ARN Engi	A Group incers and Scient 324-009-S (page 1	o LLC ntists	Client ARM Project No. Project Description Site Location ARM Representative Checked by Drilling Company Driller Drilling Equipment	: V¦æ^^] [ð dútað að : 20010224 : Sparrows Point - Parcel B24 : Sparrows Point, MD : L. Perrin : M. Replogle, E.I.T. : GSI : K. Pumphrey : Geoprobe 7822DT	Date Northi Eastin	ng (US ft) g (US ft)	: 04/20/2020 : 568904.77 : 1457506.58
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESC	RIPTION		NSCS	REMARKS
0-				(0-0.2') N	ON-NATIVE SAND w	vith fine GRAVEL, loose, brow	wn,	SW/GP	
		-		(0 2-0 7)	ASPHALT black		/	NA	
-		13.9	B24-009-SB-1.5	(0.2-0.7) (0.7-4.5') medium, cohesion	NON-NATIVE SAND dark brown and grayi	 no			
_	92	3.8						SW/GW	
_		1.3							
5-		0.0	B24-009-SB-5	(4.5-7') C brown wit	LAY with SLAG BRIC	CK GRAVEL, very firm, light w plasticity, cohesive			
_		-						CL/GW	
_		-		(7 7 2)) P					
_	60	1.5		(7-7.3) B plasticity, (7.3-8.3') coarse, n	BRICK GRAVEL, coals no cohesion BRICK GRAVEL with nedium, yellow and re	n firm light brown CLAY, d, wet, no plasticity, no	/	GP	
_		19.2		(8.3-9.5') low plasti	CLAY, soft to firm, lig city, cohesive	ght brown, very moist to wet,		CL	Wet at 8.3' bgs
		2.4		(9.5-10')	CLAYEY GRAVEL, lo	oose, dark brown and light		GC	
10-			1	End of Bo	pring				
Total Bo	orehole D	epth: 10'	bgs due to water						

	Borine		Group	LLC ntists	Client ARM Project No. Project Description Site Location ARM Representative Checked by Drilling Company	: V¦æå^] [∄ of0Edaa) ca& : 20010224 : Sparrows Point - Parcel B24 : Sparrows Point, MD : L. Perrin : M. Replogle, E.I.T. : GSI	Date Northi Eastin	ng (US ft) g (US ft)	: 04/20/2020 : 568873.21 : 1457507.37
		, ID. 1	(page 1	of 1)	Driller Drilling Equipment	: K. Pumphrey : Geoprobe 7822DT			
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESC	RIPTION		nscs	REMARKS
0-		-	B24-010-SB-1	(0-2.9') N BRICK, fi with trace	ON-NATIVE SAND a ne to coarse, medium yellow, dry, no pasti	nd SLAG GRAVEL with trac n, dark brown and dark gray city, no cohesion	e		Trace SILT at surface
-		0.0						SW/GW	
	84	0.0							
-		2.0		(2.9-3.8') brown, dr	SLAG, SAND and Gi y, no plasticity, no co	RAVEL-sized, medium, grayi hesion	ish	SW/GW	
_		0.0	B24-010-SB-5	(3.8-4.4') coarse, d cohesion (4.4-7.7')	BRICK GRAVEL with ense, black and yello CLAY with coarse GI	n some SAND-sized BRICK, w, dry, no plasticity, no RAVEL, very firm to hard, ligi	ht	GP	
5—		-		brown wit	th black, dry, low plas	ticity, cohesive			
_		0.0						CL	
-	64	0.0		(7 7 8 5')		and SLAC CRAVEL mediu	um to		
_		0.0		dense, bl cohesion (8.5-10')	CLAYEY BRICK GRA	VEL, medium, dark brown a	Ind	SW/GW	Wet at 8.5' bgs
_		0.0		brown wit	th yellow, wet, no plas	sticity, no cohesion		GC	
10—		<u> </u>	1	End of Bo	pring				
Total Bo	orehole D	epth: 10'	bgs due to water						

I	ARM Group LLC Engineers and Scientists				Client ARM Project No. Project Description Site Location ARM Representative Checked by	: V¦æå^] [3] of0Eda) c3& : 20010224 : Sparrows Point - Parcel B24 : Sparrows Point, MD : L. Perrin : M. Replogle, E.I.T.	Date	ing (US ft)	: 04/20/2020 : 568911.39
E	Boring	g ID: E	324-011-5	SB	Drilling Company Driller	: GSI : K. Pumphrey	Easti	ng (US ft)	: 1457676.38
			(page 1	of 1)	Drilling Equipment	: Geoprobe 7822DT			
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESC	RIPTION		USCS	REMARKS
0-		-	B24-011-SB-1	(0-3.5') N then non- medium o pasticity,	ogs				
-		1.6						sw/Gw	
_	78	2.7							
_		115.2	B24-011-SB-4	(3.5-4.5') plasticity,	CLAY with trace SAN cohesive	ID, light brown, moist, low		CL	
5-		63.7		(4.5-5.5') yellowish	SLAG GRAVEL, fine red, dry, non-plastic,	to coarse, loose, black with non-cohesive		GW	
_		-		(5.5-6.7') moist, lov	CLAY, firm, light brov v plasticity, cohesive,	wn with reddish yellow, dry to trace SAND	D	CL	
	75	2.9		(6.7-6.9')	CONCRETE GRAVE	L, white, dry, non-plastic,		NA	
_	75	0.0		(6.9-7.7)	sive CLAY, firm, light brov v plasticity, cobesive	wn with reddish yellow, dry to	/ ว	CL	
-		0.0		(7.7-9') C moist the	LAYEY GRAVEL with n wet at 8.1' bgs, no p	n SAND, medium dense, ver plasticity, no cohesion	у	GC	Wet at 8.1' bgs
-				End of Bo	oring				
10-									
Total Bo	prehole D	epth: 9' b	gs due to refusal						

E	Boring	ARN Eng	M Group incers and Scien B24-012-S (page 1	LLC ntists	Client ARM Project No. Project Description Site Location ARM Representative Checked by Drilling Company Driller Drilling Equipment	: V!æ^] [ð of0Efæ) c& : 20010224 : Sparrows Point - Parcel B24 : Sparrows Point, MD : L. Perrin : M. Replogle, E.I.T. : GSI : K. Pumphrey : Geoprobe 7822DT	Date Northi Eastir	ng (US ft) ng (US ft)	: 04/20/2020 : 568912.72 : 1457694.57
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESC	RIPTION		USCS	REMARKS
0		0.1 0.3	B24-012-SB-1	(0-0.5') S brown, dr (0.5-2.1') SAND an some yel	ILT with some SAND y, no plasticity, no co NON-NATIVE SAND d GRAVEL-sized, me low, dry, no plasticity,	-,	ML SW/GW		
-	98	0.0		(2.1-8.5') brown an	CLAY with trace WO d brown, dry to moist	OD at 6.5' bgs, hard, grayish , low plasticity, cohesive	1		
5		0.6						CL	
-	100	7.7	B24-012-SB-8						
-		9.9	B24-012-SB-10	(8.5-9.2') gray, dry, (9.2-10')	NON-NATIVE SAND no plasticity, no cohe CLAY, very firm, very	and SLAG GRAVEL, very d esion dark gray, dry, low plasticity	lark ′,	SW/GW CL	
10-		3.2		cohesive (10-11') (cohesion	CONCRETE, greenish	n gray, dry, no plasticity, no		NA	
_	100	6.1		(11-12.2') hard, dar) CLAY with trace SAI k gray, dry, low plasti	ND and GRAVEL, very firm t city, cohesive	to	CL	
_	100	1.9		(12.2-12. no plastic	5') GRAVEL with CLA sity, no cohesion	Y, medium, dark gray, mois	t,	GW/GC	
_		0.5		(12.5-13. to hard, c (13.8-14'	8') CLAY with trace S lark gray, dry, low pla) CLAYEY GRAVEL, l	AND and GRAVEL, very firn sticity, cohesive loose, dark gray, wet, no	n	CL GC	Wet at 13.8' bgs
15—				\plasticity, End of Bo	no cohesion]		
Total Bo	ı orehole D	epth: 14'	bgs due to water						

F	Boring	ARN Engi	Group incers and Scient 324-013-S	LLC ntists	Client ARM Project No. Project Description Site Location ARM Representative Checked by Drilling Company Driller Drilling Equipment	: V¦æå^] [ðj of0Ejæ) cæ : 20010224 : Sparrows Point - Parcel B24 : Sparrows Point, MD : L. Perrin : M. Replogle, E.I.T. : GSI : D. Marchese : Geoprobe 7822DT	Date North Eastir	ing (US ft) ng (US ft)	: 04/14/2020 : 568805.12 : 1457054.26
			(page 1	of 1)	2				1
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESC	RIPTION		USCS	REMARKS
0-				(0-0.3') A	SPHALT			NA	
-		0.0	B24-013-SB-1	(0.3-1.9') SLAG GF brown, dr	NON-NATIVE SAND RAVEL (fine) and trac y, no plasticity, no co	(fine to coarse) with trace e SILT, medium to dense, hesion		SW	
-	96	0.0		(1.9-5') S light gray	LAG, SAND and GRA ish brown, dry to mois	AVEL-sized, medium to dens st, no plasticity, no cohesion	e,		
_		0.0						SW/GW	
_		1.9	B24-013-SB-5						
5-		0.5		(5-10') No coarse, n bgs, no p	DN-NATIVE SAND ar nedium, brown to dark lasticity, no cohesion	nd SLAG GRAVEL, fine to (brown, moist then wet at 9'			
_		0.5							
_	100	0.2						SW/GW	
_		1.0							Wet at 9' bos
10		0.2							
10-				End of Bo	pring				
Total Bo	orehole D	epth: 10'	bgs due to water						

		ARN Engi	A Group	LLC ntists	Client ARM Project No. Project Description Site Location ARM Representative Checked by	: V¦æå^] [ðj of0£jæ) c& : 20010224 : Sparrows Point - Parcel B24 : Sparrows Point, MD : L. Perrin : M. Replogle, E.I.T.	Date	ng (US ft)	: 04/14/2020 : 568797.86
E	Boring	JID: E	324-014-S	SB	Drilling Company Driller	: GSI : D. Marchese	Eastin	g (US ft)	: 1457077.16
			(page 1	of 1)	Drilling Equipment	: Geoprobe 7822DT			
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESC	RIPTION		nscs	REMARKS
0-				(0-0.2') A	SPHALT			NA	
_		-	B24-014-SB-1	(0.2-4') S GRAVEL brown, dr	LAG with some NON- -sized, medium to der y, no plasticity, no co	NATIVE SAND, SAND and nse, light brownish gray to hesion			
_		0.0						014//014/	
	80	0.0						SVV/GVV	
		0.0							
_		0.1	B24-014-SB-5	(4-5') SLA brownish	AG, SAND and GRAV gray, dry, no plasticit	'EL-sized, medium, light y, no cohesion		SW/GW	
5-		0.4		(5-8') SLA GRAVEL gray, dry,	AG with some NON-N -sized, medium to den no plasticity, no cohe	ATIVE SAND, SAND and nse, brown with light brownis ssion	sh		
_	100	0.5						SW/GW	
_		0.1							
-				(8-8.3') S	LAG GRAVEL, fine, lo	oose, dark green, dry, no		GP	
_	75	0.0		(8.3-10') GRAVEL at 9.8' bg	SLAG with NON-NAT -sized, loose to mediu s, no plasticity, no col	IVE SAND, fine ım, dark brown, moist then v hesion	vet	GP/SW	Wet at 0.8' bac
10		0.0							Wordt 0.0 bys
10-				End of Bo	pring				
Total Bo	orehole De	epth: 10'⊺	bgs due to water						

E	Boring	ARN Engi	A Group neers and Scien 324-015-S (page 1	The second secon	ARM Project No. : 20010224 Project Description : Sparrows Point - Parcel B24 Site Location : Sparrows Point, MD ARM Representative : L. Perrin Checked by : M. Replogle, E.I.T. Drilling Company : GSI Driller : D. Marchese Drilling Equipment : Geoprobe 7822DT				: 04/16/2020 : 568696.40 : 1456945.45
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESC	RIPTION		USCS	REMARKS
0	100	0.0	B24-015-SB-1	(0-0.7') C plasticity, (0.7-2.5') and brow	RGANIC SILT, soft, on cohesion SLAG, SAND and GI n, dry, no plasticity, n	dark brown, dry to moist, no RAVEL-sized, medium, gray o cohesion		OL SW/GW	No water encountered
		0.0		End of Bo	pring				
Total Bo	orehole D	epth: 2.5'	bgs due to multi	ple refusals.					

Im	ARM Group LLC Engineers and Scientists				Client ARM Project No. Project Description Site Location ARM Representative	: V¦æå^] [ðj oðŒjæj œ& : 20010224 : Sparrows Point - Parcel B24 : Sparrows Point, MD : L. Perrin	Date		: 04/16/2020
E	Boring	j ID: E	324-016-S (page 1	5B of 1)	Checked by Drilling Company Driller Drilling Equipment	: M. Replogle, E.I.T. : GSI : D. Marchese : Geoprobe 7822DT	North Eastii	ing (US ft) ng (US ft)	: 568675.93 : 1456949.43
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESC	RIPTION		nscs	REMARKS
0-		0.0	B24-016-SB-1	(0-0.5') O plasticity, (0.5-5') S brown to	RGANIC SILT with some SAND, soft, brown, dry, no no cohesion LAG, SAND and GRAVEL-sized, medium to dense, light grayish brown, dry, no plasticity, no cohesion			ML	Moderate amount of organics
_		0.0							
_	90	0.0						sw/Gw	No water encountered
-		0.0							
5-		0.1	B24-016-SB-5	End of Br	sring				
-				End of Bo	pring				
10—									
Total Bo	brehole D	epth: 5' b	gs due to multiple	e refusals.					

	ARM Group LLC Engineers and Scientists Boring ID: B24-017-SB (page 1 of 1)				Client ARM Project No. Project Description Site Location ARM Representative Checked by Drilling Company Driller Drilling Equipment	: Viæå^] [ð ottgæ) cæ : 20010224 : Sparrows Point - Parcel B24 : Sparrows Point, MD : L. Perrin : M. Replogle, E.I.T. : GSI : K. Pumphrey : Geoprobe 7822DT	Date North Eastin	ing (US ft) ng (US ft)	: 04/20/2020 : 568913.42 : 1457390.69
Depth (ft.)	% Recovery	PID Reading (PPM)	t aged) Sample No/Interval	of 1)	DESC	RIPTION		nscs	REMARKS
0-		0.0	B24-017-SB-1	(0-1.4') N brown wit	ION-NATIVE SAND w th gray, dry, no plastic	vith SLAG GRAVEL, medium city, no cohesion	١,	SW/GW	
-	90	0.0 1.3 0.0		(1.4-4.8') brownish	SLAG, SAND and G gray, dry, no plasticit	RAVEL-sized, medium, light y, no cohesion		sw/gw	
5—		0.0	B24-017-SB-5	(4.8-7') N medium,	ON-NATIVE SAND w dark brown with gray	<i>i</i> ith SLAG BRICK GRAVEL, , dry, no plasticity, no cohesi	on		No water encountered
-	· 100	0.0						SW/GW	
-				End of Bo	pring				
-									
10-									
Total Bo	, orehole D	epth: 7' b	gs due to multipl	e refusals.					

	ARM Group LLC Engineers and Scientists				Client ARM Project No. Project Description Site Location ARM Representative Checked by	: V¦æå^] [ð] ơ͡ᠺটᡛ]æ) ය& : 20010224 : Sparrows Point - Parcel B24 : Sparrows Point, MD : L. Perrin : M. Replogle, E.I.T.	Date	ı (US ft)	: 04/17/2020 : 568824.45
E	Boring	, ID: E	324-018-S (page 1	3B of 1)	Drilling Company Driller Drilling Equipment	: GSI : D. Marchese : Geoprobe 7822DT	Easting ((US ft)	: 1457362.65
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESC	RIPTION		USCS	REMARKS
0		-	B24-018-SB-1	(0-0.25') brown, dr (0.25-10') BRICK, S	SILT with SAND and y, no plasticity, no co) SLAG wit NON-NAT SAND and GRAVEL-so d gray, day then wat a	ORGANIC MATTER, soft, hesion IVE SAND with trace yellow ized, medium to dense, dark t 9 1 bas, no plasticity no		ML	
_		0.0		cohesion	u gray, ury then wet a	a 9.1 bgs, no plasticity, no			
_	90	0.0							
_		0.0							
5-		0.0	B24-018-SB-5				9	W/GW	
_		-						w,ow	
_		0.0							
-	82	0.0							
-		0.0							Wet at 9.1' bgs
10-		0.0		End of Br	orina				
					·····y				
Total Bo	orehole D	epth: 10'	bgs due to water						

E	ARM Group LLC Engineers and Scientists Boring ID: B24-019-SB (page 1 of 1)			o LLC ntists	Client ARM Project No. Project Description Site Location ARM Representative Checked by Drilling Company Driller Drilling Equipment	: V¦æ^^] [ð j dottjæ) c& : 20010224 : Sparrows Point - Parcel B24 : Sparrows Point, MD : L. Perrin : M. Replogle, E.I.T. : GSI : K. Pumphrey : Geoprobe 7822DT	Date Northing (US ft) Easting (US ft)	: 04/20/2020 : 568735.14 : 1457343.65
			(page 1	of 1)				1
Depth (ft.)	A Image: Constraint of the system A A B B B C B B B C B C B C B C B C B C B C B C B C C C <td>REMARKS</td>							REMARKS
0-		0.0	B24-019-SB-1	(0-8.6') S SILT at 1 medium, no plastic	LAG GRAVEL with tra .5' bgs, fine to coarse dark brown to very da ity, no cohesion	ace yellow BRICK and trace with some SAND-sized, ark brown and dark gray, dry,		
_		0.0						
_	90	0.0						
_		0.0						
5-		0.0	B24-019-SB-5				GW	
_		-						
_		0.0						
_	80	3.5						
		3.6		(8.6-9') B	RICK, SAND and GR	AVEL-sized, dense, yellow,	GW/SW	
-		0.2		dry, no pl (9-10') SL dark brov	asticity, no cohesion AG GRAVEL, SAND vn, dry, no plasticity, r	and GRAVEL-sized, mediun	n, SW/GW	Wet at 9' bgs
10-				End of Bo	pring			
Total Bo	orehole D	epth: 10'	bgs due to water					

	ARM Group LLC Engineers and Scientists			LLC ntists	Client ARM Project No. Project Description Site Location ARM Representative Chacked by	: V¦æå^][ā)o ⁽ Octļa);ca& :20010224 :Sparrows Point - Parcel B24 :Sparrows Point, MD :L. Perrin :M. Benlogia, E.L.T.	Date	: 04/17/2020
E	Boring	j ID: E	324-020-S	SB	Drilling Company Driller Drilling Equipment	: GSI : D. Marchese : Geoprobe 7822DT	Easting (US ft)	: 1457446.65
			(pgo .					
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESC	RIPTION	nscs	REMARKS
0-		-	B24-020-SB-1	(0-7.2') N GRAVEL brown, w	ON-NATIVE SAND a -sized, dense to medi ith trace yellow, dry, r	nd SLAG BRICK, SAND and um, dark brown, light grayish o plasticity, no cohesion	1	
		0.1						
	78	0.4						
_		0.9					SW/GW	/
5-		0.1						
_		-						
_		7.7						
-	66	19.6	B24-020-SB-8	(7.2-8.8') reddish b yellow, dr	BRICK SLAG, SAND rown, dark brown, an ry no plasticity, no col	and GRAVEL-sized, dense, d pale red with trace reddish nesion	SW/GW	
		1.3						
-		0.2		(8.8-10') brown an no cohes	SLAG, SAND and GF d dark gray, dry then ion	AVEL-sized, dense, dark wet at 9.4' bgs, no plasticity,	SW/GW	/ Wet at 9.4' bgs
10-			1	End of Bo	oring		I	
Total Bo	brehole D	epth: 10'	bgs due to water					

Internet	<u>A</u>	ARN Engi	A Group	LLC	Client ARM Project No. Project Description Site Location ARM Representative	: V¦æå^] [ðj d⁄0āˈjæ) æð. : 20010224 : Sparrows Point - Parcel B24 : Sparrows Point, MD : L. Perrin	Date		: 04/21/2020
E	Boring) ID: E	324-021-8	SB	Checked by Drilling Company Driller Drilling Equipment	: M. Replogle, E.I.T. : GSI : K. Pumphrey : Geoprobe 7822DT	Northi Eastin	ng (US ft) Ig (US ft)	: 569089.83 : 1457629.59
			(page 1	of 1)					
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESC	RIPTION		USCS	REMARKS
0-				(0-0.3') S	ILTY SAND with ORG	GANIC MATTER, loose to		SM	
		0.0	B24-021-SB-1	<u>medium,</u> (0.3-0.5')	dark brown, dry, no p CONCRETE, white, o	lasticity, no cohesion drv. no plasticity. no cohesio	/	NA	
-		0.0		(0.5-7') N GRAVEL dry, no pl	ON-NATIVE SAND w -sized, medium, dark asticity, no cohesion	ith SLAG BRICK, SAND and brown with red and yellow,	:/ d		
	100	0.0							
_		0.1						SW/GW	
5-		2.6	B24-021-SB-5						
		0.0							
_		0.7							
_	94	0.0		(7-10') SL SAND-siz bgs, no p	AG BRICK GRAVEL zed, medium, dark bro lasticity, no cohesion	, fine to coarse with some wn, very moist then wet at 7	7.2'		Wet at 7.2' bgs
_		0.2						GW	
10		0.0							
10-				End of Bo	oring				
Total Bo	prehole D	epth: 10'	bgs due to water						

191	ARM Group LLC Engineers and Scientists			ntists	Client ARM Project No. Project Description Site Location ARM Representative	: V¦æå^] [3j dût]æ) æ& : 20010224 : Sparrows Point - Parcel B24 : Sparrows Point, MD : L. Perrin	Date		: 04/21/2020
E	Boring	g ID: E	324-022-S	SB	Checked by Drilling Company Driller Drilling Equipment	: M. Replogle, E.I.T. : GSI : K. Pumphrey : Geoprobe 7822DT	Northin Easting	ng (US ft) g (US ft)	: 569084.48 : 1457603.33
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESC	RIPTION		nscs	REMARKS
0-				(0-7.5') N	ON-NATIVE SAND w	ith SLAG BRICK, very fine to	0		
		0.0	B24-022-SB-1	with yello	w and gray, dry, no p	L-sized, medium, dark brow lasticity, no cohesion	'n		
		0.0							
_	94	0.0							
		0.1					:	SW/GW	
5-		0.0	B24-022-SB-5						
		-							
		0.0							
-	84	0.0		(7.5-7.7')	SILT with SAND, firm	, black with white speckles,		ML	Wet at 7.7' bos
		0.0		\ <u>moist, no</u> (7.7-9.7') medium,	plasticity, no cohesio SLAG BRICK GRAVI dark brown, wet, no p	n EL with NON-NATIVE SAND Iaticity, no cohesion),	GW/SW	5
10_		0.0		(9.7-10')	SILT with SAND, firm	, black with white speckles,		ML	
10				Wet, no p End or Bo	lasticity, no cohesion pring		/		
Total Bo	Drehole D	epth: 10'	bgs due to water	:					

	ARM Group LLC Engineers and Scientists Boring ID: B24-023-SB				Client ARM Project No. Project Description Site Location ARM Representative Checked by	: V¦æå^] [ð, óð Œjæ) c& : 20010224 : Sparrows Point - Parcel B24 : Sparrows Point, MD : L. Perrin : M. Replogle, E.I.T.	Date	ing (US ft)	: 04/21/2020 : 569129.89
E	Boring) ID: E	324-023-5	BB	Drilling Company Driller	: GSI : K. Pumphrey	Eastir	ng (US ft)	: 1457507.18
			(page 1	of 1)	Drilling Equipment	: Geoprobe 7822D1		I	
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESC	RIPTION		USCS	REMARKS
0-		-	B24-023-SB-1	(0-0.25') brown, dr (0.25-5.5 coarse w	SAND with SILT, very y, no plasticity, no co) NON-NATIVE SAN th large metallic-like	r fine to fine, loose to mediur hesion D with SLAG GRAVEL, fine SLAG COBBLES at 4' bgs,	n,/ / to	SW-SM	
_		0.5		brown wi	ih gray, dry, no plastic	oty, no cohesion			
_	82	0.2						SW/GW	
_		0.3							
5-		0.0	B24-023-SB-5						
_		-		(5.5-10') GRAVEL	SLAG with trace BRI0 -sized, medium, light	CK GRAVEL, SAND and gray, wet, no plasticity, no			
_		0.0							
_	80	0.0						SW/GW	Wet at 7.2' bgs
_		0.0							
10-		0.0		Find of D					
					ы пg				
Total Bo	brehole D	 epth: 10' ∣	bgs due to water						

E	ARM Group LLC Engineers and Scientists Boring ID: B24-024-SB (page 1 of 1)				Client ARM Project No. Project Description Site Location ARM Representative Checked by Drilling Company Driller Drilling Equipment	: V¦æå^] [ð of0Ejæ) cæ : 20010224 : Sparrows Point - Parcel B24 : Sparrows Point, MD : L. Perrin : M. Replogle, E.I.T. : GSI : K. Pumphrey : Geoprobe 7822DT	Date North Eastir	ing (US ft) ng (US ft)	: 04/21/2020 : 569102.78 : 1457420.36
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESC	RIPTION		USCS	REMARKS
0-		0.2	B24-024-SB-1	(0-0.5') S dry, no pl (0.5-8.7')	AND with SILT, very asticity, no cohesion NON-NATIVE SAND	fine to fine, loose, light brown with SLAG BRICK, SAND a	n, nd	SW-SM	
_		0.3		dry then	-sized, medium, dark wet at 8.5' bgs, no pla	brown with gray and yellow, sticity, no cohesion			
-	94	0.8							
		0.3							
5-		2.0	B24-024-SB-5					SW/GW	
		-							
		0.1							
_	84	0.1							
		0.1		(8.7-8.9')	CLAY with trace SAN	ID and GRAVEL, soft, very		CL	Wet at 8.5' bgs
10		0.1		\moist, broken (8.9-10') dense, da cohesion	ownish gray, low plas SLAG BRICK, SAND ark brown with dark g	icity, cohesive and GRAVEL-sized, mediur ay, wet, no plasticity, no	/ n to	GW	
10-				End of Bo	pring				
Total Bo	I orehole D	epth: 10'	bgs due to water	:					

	ARM Group LLC Engineers and Scientists Boring ID: B24-025-SB (page 1 of 1)				Client ARM Project No. Project Description Site Location ARM Representative Checked by Drilling Company Driller Drilling Equipment	: Viæå^] [ð d út jæ) dð. : 20010224 : Sparrows Point - Parcel B24 : Sparrows Point, MD : L. Perrin : M. Replogle, E.I.T. : GSI : D. Marchese : Geoprobe 7822DT	Date North Eastii	ing (US ft) ng (US ft)	: 04/14/2020 : 568938.09 : 1456932.26
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESC	RIPTION		USCS	REMARKS
0-		0.0	B24-025-SB-1	(0-0.25') medium,	SAND with trace CON loose, pale yellow an	NCRETE GRAVEL, fine to d dark brown, dry, no plastic	ity,	SW	
-		0.0		0.25-2') (0.25-2')	ion NON-NATIVE SAND with trace large BRI0	with trace SLAG BRICK]	SW/GW	
	92	0.2 0.6 0.9	B24-025-SB-5	(2-5.5') N fine, med plasticity,	Min trace large BRIC medium, dark brown, no cohesion ONo-NATIVE SAND ium, brown, yellow, lig no cohesion	and SLAG BRICK GRAVEL, very line to brown, and yellow, dry, no	/	SW/GP	
-	66	- 1.9 0.0		(5.5-10.5 fine to co yellow, ar cohesion) SLAG BRICK GRA arse with cobbles, de nd brown, dry then we	VEL and NON-NATIVE SAN nse to medium, dark brown, et at 8' bgs, no plasticity, no	D,	GW	Wet at 8' bgs
10		0.0	B24-025-SB-10						
- 10	65	- 0.4 0.0		(10.5-12.) plasticity,	7') GRAVEL, fine, me no cohesion	dium, dark brown, wet, no	L	GW	
_		0.0		with CON brown wit	ICRETE GRAVEL at th yellow, wet, no plas	13.5' bgs, medium to dense, sticity, no cohesion	dark	SW/GW	
15	100	0.0	B24-025-SB-15	(14-15') S coarse, d cohesion	BLAG BRICK GRAVE ense, yellow and brow	L with trace SILT, fine to wn, wet, no plasticity, no		GW	
10-				End of Bo	pring				
Total Bo	Drehole D	epth: 15'	bgs due to refusa	al.					

ARM Group LLC Engineers and Scientists Boring ID: B24-026-SB			LLC ntists	Client ARM Project No. Project Description Site Location ARM Representative Checked by Drilling Company Driller	: V¦æå^] [ð, dûtað, æð. : 20010224 : Sparrows Point - Parcel B24 : Sparrows Point, MD : L. Perrin : M. Replogle, E.I.T. : GSI : D. Marchese	Date Northi Eastir	ing (US ft) ng (US ft)	: 04/14/2020 : 568950.35 : 1457043.58	
(page 1 of 1)					Drilling Equipment	: Geoprobe 7822DT			
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval	DESCRIPTION				USCS	REMARKS
-0		-	B24-026-SB-1	(0-6') SILT with SAND and GRAVEL with trace COBBLES, medium, dark brown with trace gray and white, dry, no plasticity, no cohesion					Trace amount of organics at the surface
-	74	0.0						мі	
_		0.0							
5-		0.0	B24-026-SB-5						
-		-		(0.0) 22					
	70	0.0		(6-8') BR COBBLE cohesion	ICK GRAVEL with SII S, reddish yellow and	LI, TINE TO COASE WITH brown, wet, no plasticity, no		GW	Wet at 6.5' bgs
		0.0		(8-9') BR brown an	ICK COBBLES and S d yellow, wet, no plas	ILTY SAND, medium, dark ticity, no cohesion		GP/SM	
10-		0.0 -	0.0 B24-026-SB-10 (9-11.6') CLAY with SAND and BRICK COBBLES, firm, li olive brown, wet, no plasticity, no cohesion					CL/GP	
_	78	0.1 0.0		(11.6-13. SAND, de cohesion	3') SLAG BRICK COE ense, red, yellow, and	BLES and GRAVEL with tra brown, wet, no plasticity, no	ace	GP	
-		0.2		(13.3-15') plasticity, and GRA) CLAY with SAND, fin cohesive with a lense VEL with trace SAND	rm, light olive brown, wet, lov e of SLAG BRICK COBBLES 9, red, yellow, and brown fror	w S m	CL	
15—	100	0.0	B24-026-SB-16	13.6-14.3 (15-16') S	3' bgs SLAG BRICK GRAVE	L, fine to coarse, dark brown	۱,	GW	
	100	0.0		(16-16.5')) CONCRETE, white a	and very pale brown		NA	
	prehole D	Depth: 16.5	5' bgs due to refu	End of Bo	bring				

E	Boring	ARN Engi	A Group incers and Scien 324-028-S (page 1	LLC ntists	Client ARM Project No. Project Description Site Location ARM Representative Checked by Drilling Company Driller Drilling Equipment	: V¦æå^] [ðj oð Œjæ) oð & : 20010224 : Sparrows Point - Parcel B24 : Sparrows Point, MD : L. Perrin : M. Replogle, E.I.T. : GSI : K. Pumphrey : Geoprobe 7822DT	Date North Eastir	ing (US ft) ng (US ft)	: 04/21/2020 : 569286.19 : 1457246.31
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESC	RIPTION		USCS	REMARKS
0		0.0	B24-028-SB-1	(0-10') No trace ME brown to then wet	ON-NATIVE SAND ar TALLIC-LIKE SLAG C dark brown with some at 8' bgs, no plasticity	nd SLAG BRICK GRAVEL w GRAVEL, medium to dense, e gray and trace yellow, dry r, no cohesion	ith		
		0.0							
	82	0.0							
_		0.2							
5-		0.0	B24-028-SB-5					SW/GW	
		-							
		0.0							
_	82	0.0							Wet at 8' bgs
-		0.0							
10		0.0							
10-				End of Bo	pring				
Table									
		εριιι. ΙΟ	bys due to water						

E	ARM Group LLC Engineers and Scientists Boring ID: B24-029-SB (page 1 of 1)				Client ARM Project No. Project Description Site Location ARM Representative Checked by Drilling Company Driller Drilling Equipment	: V¦æå^] [ðj of0Ejæ) c& : 20010224 : Sparrows Point - Parcel B24 : Sparrows Point, MD : L. Perrin : M. Replogle, E.I.T. : GSI : K. Pumphrey : Geoprobe 7822DT	Date Northin Easting	g (US ft) (US ft)	: 04/20/2020 : 569528.12 : 1456799.44
			(page 1	of 1)					
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESC	RIPTION		NSCS	REMARKS
0-				(0-0.5') S	ILT with SAND, fine,	very firm to hard, dark brown	۱,	ML	
_		-	B24-029-SB-1	(0.5-1.5') cohesion	SLAG COBBLES, de	nse, dry gray, no plasticity, r	סו	GP	
-	80	3.8 1.9		(1.5-3.6') depth and brown, dr	NON-NATIVE SAND d a CLAY lens from 2 y, no plasticity, no co	with trace BRICK COBLES .6-2.8' bgs, medium, dark hesion	at	SW	
_		1.2 0.0		(3.6-5') S SAND, fir red, and y	LAG BRICK GRAVEL ne to coarse, dense, v yellow, dry, no plastic	with some NON-NATIVE very dark brown, dark gray, ity, no cohesion		GW	
5—		-		(5-7.1') N dark brow	ON-NATIVE SAND w vn, dry, no plasticity, r	vith trace GRAVEL, medium, no cohesion		SW	
-	76	4.3		(7.1-8.8') no plastic	BRICK GRAVEL with ity, no cohesion	n COBBLES, dense, yellow, o	dry,	GW	
		35.1	B24-029-SB-9	(8 8-10')	NON-NATIVE SAND	with SLAG GRAVEL mediu	m		
_		22.9		dark brov no cohes	ion	wet at 9.8' bgs, no plasticity,	, 	SW/GW	Wet at 9.8' bgs
10-			1	End of Bo	oring		I		
Total Bo	orehole De	epth: 10'	bgs due to water	:					

E	ARM Group LLO Engineers and Scientists Boring ID: B24-030-SB (page 1 of 1)			o LLC ntists	Client			l (US ft) (US ft)	: 04/17/2020 : 568830.13 : 1457493.39
			(page 1	of 1)	Drilling Equipment	: Geoprobe 7822DT			
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESC	RIPTION		NSCS	REMARKS
-0		- 0.2	B24-030-SB-1	(0-0.25') dry, no pl (0.25-4.5' CONCRE medium, cohesion	SILT with some SANI asticity, no cohesion) SLAG BRICK with N TE from 2.5 to 3.5' bi brown, red, gray and	D and CLAY, soft, dark brow NON-NATIVE SAND with sor gs, SAND and GRAVEL-size yellow, dry, no plasticity, no	n, me ed,	ML	Organics at the surface
-	86	0.9					G	w/sw	
-		0.4							
5—		0.0 -		(4.5-6') C trace rede	LAY with trace GRAV dish yellow, dry to mo	/EL, firm, light brown with ist, low plasticity, cohesive		CL	
-		-		(6-8.5') S GRAVEL no plastic	LAG BRICK with NOI -sized, medium, brow ity, no cohesion	N-NATIVE SAND, SAND and n, red, gray, and yellow, dry	d ,		
-	48	23.0					G	w/sw	
-		77.5	B24-030-SB-9	(8.5-9.6') brown, m	CLAY with SLAG GR oist, low plasticity, co	AVEL, coarse, firm, light hesive	c	CL/GP	
10-		0.4		(9.6-10') brown an	GRAVEL with CLAY a d light brown, wet, no	and SAND, medium, very da plasticity, no cohesion	rk G	W-GC	Wet at 9.6' bgs
				End of Bo	pring				
Total Bo	brehole D	epth: 10'	bgs due to water	:					

T	ARM Group LLO Engineers and Scientists				Client ARM Project No. Project Description Site Location ARM Representative Checked by	: V¦æå^] [ĝ ofOt‡a) c& : 20010224 : Sparrows Point - Parcel B24 : Sparrows Point, MD : L. Perrin : M. Replogle, E.I.T.	Date Northing (I	: 04/17/2020 JS ft) : 568827.65	
E	Boring) ID: E	324-031-S	SB of 1)	Drilling Company Driller Drilling Equipment	: GSI : D. Marchese : Geoprobe 7822DT	Easting (U	S ft) : 1457466.69	
		[(13						
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESC	RIPTION		23 REMA	RKS
0-				(0-0.25')	CLAYEY SAND with t	race ORGANICS, loose,		SC IA	
		0.5		(0.25-0.5) ASPHALT	nesion	/ [_]		
-		2.4	B24-031-SB-1.5	(0.5-6.7') fine to co dry, no pl	NON-NATIVE SAND arse, medium, dark b asticity, no cohesion	and SLAG BRICK GRAVEL rown, gray, yellow, and red,	,		
-	86	19.7							
_		1.2					sw	/GW	
5-		0.1	B24-031-SB-5					Trace purple SLAG	at 4.8' bgs
_		-							
		0.3		(6.7-7.1')	SAND with trace BRI	CK GRAVEL, very fine to	s	W	
	82	0.5		cohesion (7.1-7.5') brown, dr	CLAY with some SLA y, low plasticity, cohe	AG GRAVEL, very firm, light sion		CL IA	
-		0.3		(7.5-8.2') (8.2-8.3') plasticity,	CONCRETE, white, or SAND, very fine to fir no cohesion	dry ne, very dark brown, dry, no	s	₩	
-		0.4		(8.3-9.5') low plasti	CLAY, hard, light bro city, cohesive	wn with reddish yellow, dry,		CL Wet at 0.01 here	
10-		0.1		(9.5-10') medium p GRAVEL	CLAY, firm, light brow blasticity, cohesive; w at depth	rn with reddish yellow, moist, ith yellow SAND and trace		CL	
				End of Bo	pring				
Total Bo	orehole D	epth: 10'	bgs due to water	·.					

	ARM Group LLO Engineers and Scientists				Client ARM Project No. Project Description Site Location ARM Representative Checked by	: V¦æå^] [ðj oð Œjæj cæð : 20010224 : Sparrows Point - Parcel B24 : Sparrows Point, MD : L. Perrin : M. Replogle, E.I.T.	Date	ing (US ft)	: 04/15/2020 : 569009.27
E	Boring	ID: E	324-032-S	SB	Drilling Company Driller	: GSI : D. Marchese	Eastir	ng (US ft)	: 1456645.27
			(page 1	of 1)	Drilling Equipment	: Geoprobe 7822D1		1	Γ
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESC	RIPTION		USCS	REMARKS
0-		-	B24-032-SB-1	(0-0.25')	ORGANIC SILT, loos	e, very dark brown, dry, no		OL	
-		0.0		(0.25-2.5 trace OR and light) NON-NATIVE SAN GANICS, fine to coar gray, dry, no plasticity	D and SLAG GRAVEL with se, medium, very dark browr /, no cohesion	/ ו	SW/GW	
	82	0.0		(2.5-3.7')	SLAG GRAVEL, fine	to coarse, dense, gray with			
-		0.2		brown, dr	y, no plasticity, no co	hesion		GW	
-		0.0	B24-032-SB-5	. (3.7-6') B yellow, dr	RICK and SLAG GRA y, no plasticity, no co	VEL, medium, very brown v hesion	vith		
5-							GW		
-		-		(6 11') SI		me SAND medium to dense			
-		0.0		pale brow	<i>ight gray, and white</i>	e, moist, no plasticity, no	<u>,</u>		
	70	0.0							
		0.0						GW	
		0.0	B24-032-SB-10						
10-		-							
-		-		(11-15') S dark brov	SLAG GRAVEL, SAN vn and gray, wet, no p	D-sized, medium to dense, v plasticity, no cohesion	ery		
-	60	0.1							Wet at 12.8' bgs
-		0.3						GW	
-		0.0							
15—		0.0		End of Br	orina				
					9				
Total Bo	orehole De	epth: 15'	bgs due to water						

	ARM Group LLC Engineers and Scientists			LLC	Client ARM Project No. Project Description Site Location ARM Representative	: V¦æå^] [ðj ơð Œjæ) ය& : 20010224 : Sparrows Point - Parcel B24 : Sparrows Point, MD : L. Perrin	Date		: 04/15/2020
	Boring	g ID: E	324-033-S (page 1	5B of 1)	Checked by Drilling Company Driller Drilling Equipment	: M. Replogle, E.I.T. : GSI : D. Marchese : Geoprobe 7822DT	North Eastir	ing (US ft) ng (US ft)	: 568987.38 : 1456642.00
		<u> </u>		,					
Depth (ft.)	% Recovery	PID Reading (PPM	Sample No/Interval		DESC	RIPTION		nscs	REMARKS
0-		-	B24-033-SB-1	(0-1') SIL dark brov	TY SAND with trace f vn, dry, no plasticity, r	ine SLAG GRAVEL, mediun no cohesion	٦,	SM	Moderate amount of organics 0 to 0.2' bgs
-		18.3		(1-15') SI SILT, fine white, wit	AG GRAVEL, SAND to coarse, medium to h trace green, dry the	-sized GRAVEL, and trace o dense, dark brown, gray, a en wet at 12' bgs, no plasticit	nd y,		
_	70	25.9		no cones	ION				
		1.6							
_		0.1	B24-033-SB-5						
5-		-							
-		7.5							
-	86	6.4							
-		2.8						GW/SW	
-		0.5	B24-033-SB-10						
10-		-							
-		-							
-	60	-							Wet at 12' bgs
-		1.4							
-		0.4							
15—			1	End of Bo	pring				1
Total B		epth: 15'	bas due to water						
		opui. 10	Se due lo waler						

	ARM Group LLC Engineers and Scientists Boring ID: B24-034-SB/PZ				Client : Vl:æå^] [å dítæjæj dåk ARM Project No. : 20010224 Project Description : Sparrows Point - Parcel B24 Site Location : Sparrows Point, MD ARM Representative : L. Perrin Checked by : M. Replogle, E.I.T. Drilling Company : GSI			Soil Boring Installation Date Piezometer Installation Date Casing/Riser/Screen Type Borehole Diameter Riser/Screen Diameter Northing (US ft) Easting (US ft)			: 04/21/2020 : 04/21/2020 : PVC : 2.25" : 1" : 569458.42		
Bo	oring l	D: B2	2 4-034-SB (page 1	/PZ of 1)	Drilling Company Driller Drilling Equipment	: GSI : K. Pumphre : Geoprobe 7	y 822DT		48-Hr DTW : 9.95' TO No LNAPL or DNAPL detected at 0 or 48			: 1457177.41 : 9.95' TOC l at 0 or 48 hours	
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESCRIPTION	1	USCS		Π				REMARKS
0-		-	B24-034-SB-1	(0-0.5') S fine, loos cohesion	AND with SILT, very t e, brown, dry, no plas	fine to sticity, no	SW-SM			-1'	PVC Riser		
-		0.3		(0.5-1.5') SLAG BR GRAVEL	NON-NATIVE SAND RICK, SAND and -sized, medium, brow	with m to dark	NA	-					
-	92	0.2		dry, no pl (1.5-2') C GRAVEL	d gray with yellowish asticity, no cohesion ONCRETE, SAND ar -sized, medium, white	rea, nd e, dry, no				•			
_		0.0	B24-034-SB-5	plasticity, (2-7.3') N SAND an dense. br	no cohesion ON-NATIVE SAND a d GRAVEL-sized, me rown to dark brown ar	nd SLAG, edium to nd grav.	SW/GW						
5-		-		dry, no pl	asticity, no cohesion	0)							
-		0.1					<u> </u>	_		—Si	and Pack		
-	78	0.4		(7.3-7.5') GRAVEL and red, (METALLIC SLAG, cc to COBBLE-sized, dc dry, no plasticity, no c	barse ense, gray cohesion	GP						Wet at 7.5' bgs
-		0.3		GRAVEL brown, we	-sized, medium to de et, no plasticity, no co	iD and nse, dark bhesion	CIMUSIM						
10-		-					Gvv/3vv			1'	PVC Screen		
-		-											Heavy sludge-like
-	70	-		(12-14') S coarse S/ trace gray	SILT with intermittent s AND layers, soft, blac y, wet, low plasticity, o	very k with cohesive	ML						odor and trace sheen present. No visible product.
-		-		(14-15') S	SAND with trace fine (GRAVEL,	SW						
15—				black and cohesion End of Bo	brown, wet, no plast	icity, no] [nd Cap		
Boring to TOC: To DTW: Do bgs: Bel	erminated op of PVC epth to wa ow ground	at 15' bg casing ater d surface	is due to water a	nd piezomet	er installation	Riser S Riser: 0 Screen: Sand P Bentoni	tickup: 2.70') - 5' bgs : 5 - 15' bgs [ack: 3 - 15' b ite Seal: 0 - 3	[Slot S ogs [G 3' bgs	Size: Grain	0.010" Size: V in Size] VG #2] : bentonite chips	5]	

E	Boring	ARN Eng	M Group incers and Scien B24-037-S	LLC ntists	Client ARM Project No. Project Description Site Location ARM Representative Checked by Drilling Company Driller	: V¦æå^] [ð of0Efæ) c& : 20010224 : Sparrows Point - Parcel B24 : Sparrows Point, MD : L. Perrin : M. Replogle, E.I.T. : GSI : D. Marchese	Date North Eastin	ing (US ft) ng (US ft)	: 04/16/2020 : 569075.17 : 1456866.03
			(page 1	of 1)	Drilling Equipment	: Geoprobe 7822DT			
Depth (ft.)	% Recovery	PID Reading (PPM)	Sample No/Interval		DESC	RIPTION		USCS	REMARKS
-0		-	B24-037-SB-1	(0-2.8') B GRAVEL SAND ar no plastic	RICK GRAVEL and S and SAND with trace d GRAVEL-sized, loc sity, no cohesion	ELAG with some metallic ORGANICS at the surface, ose, red, gray, and brown, dr	у,	GW/SW	
-	70	1.7 0.0		(2.8-8.2') GRAVEL gray, dry	SLAG and NON-NAT -sized with trace COE , no plasticity, no cohe	TIVE SAND, SAND and BLES, medium, brown and esion			
5-		0.0							
5		-						SW/GW	
		17.9							
	84	40.0	B24-037-SB-8						Wet at 8' bos
		7.1		(8.2-8.6')	CONCRETE, white			NA	
-		0.5	B24-037-SB-10	(8.6-10') GRAVEL plasticity,	SLAG GRAVEL and I -sized, medium to de no cohesion, CLAY I	NON-NATIVE SAND, SAND nse, brown and gray, wet, no ense at 9' bgs	and D	SW/GW	
10-	100	0.4		(10-12') F and gray	FILL GRAVEL, fine to gray, wet, no plasticit	coarse, dense, red, brown, y, no cohesion		CW	
	100	0.7	B24-037-SB-12					Gvv	
_				End of Bo	oring				
-									
- 15									
Total Bo	orehole D	epth: 12'	bgs due to multip	ble refusals.					

APPENDIX C

▶ ▶ TRIAD Listens, Designs & Delivers

May 8, 2020

Mr. Stewart Kabis ARM Group, Inc. 9175 Guilford Road, Suite 310 Columbia, MD 21046

Re: Sparrows Point Well Survey Sparrows Point, MD Triad Engineering Job No. 03-15-0343

Mr. Kabis:

Below are the specified surveyed wells, date of last field work completed on May 4th, 2020. The coordinate values shown were derived from G.P.S. observations based on National Geodetic Surveys stations "GIS 1", PID AC7684 and "GIS 2", PID AC7685 which purport to be on NAD83(2011) Maryland Grid coordinate system with NAVD88 (AMSL) elevations.

DESCRIPTION	NORTHING	EASTING	TOP ELEVATION (CASING UNLESS NOTED)	GROUND (NAIL SET) AT WELL/ PIEZOMETER	NOTES
B24-001-PZ	568717.228	1457146.262	12.96	9.81	GROUND (NAIL SET) **
B24-003-PZ	568561.389	1456819.389	13.93	10.61	GROUND (NAIL SET) **
B24-027-PZ	569148.585	1456802.770	11.60	8.73	GROUND (NAIL SET) **
B24-034-PZ	569458.422	1457177.413	11.51	8.71	GROUND (NAIL SET) **
B24-035-PZ	569328.630	1456515.856	12.80	9.96	GROUND (NAIL SET) **
B24-036-PZ	569051.640	1456637.066	14.05	11.25	GROUND (NAIL SET) **

APPENDIX D

	PID CALIBRATION LOG														
'ROJECT NAME: Area B: Parcel B24 Phase II SAMPLER NAME: L. Perrin															
PROJECT NUMBER: 20010224 PAGE 1_of 1_															
	SAMPLER		FRESH		STANDARD										
DATE/TIME	INITIALS	PID SERIAL #	AIR CAL	STANDARD	CONCENTRATION	METER READING	COMMENTS								
4/14/2020 9:20	LLP	592-913262	0.0	Isobutylene	100 ppm	100.0									
4/15/2020 8:07	LLP	592-913262	0.0	Isobutylene	100 ppm	100.0									
4/16/2020 8:28	LLP	592-913262	0.0	Isobutylene	100 ppm	100.0									
4/17/2020 8:10	LLP	592-913262	0.0	Isobutylene	100 ppm	100.0									
4/20/2020 8:20	LLP	592-913262	0.0	Isobutylene	100 ppm	100.0									
4/21/2020 8:20	LLP	592-913262	0.0	Isobutylene	100 ppm	100.0									
4/22/2020 8:40	LLP	592-913262	0.0	Isobutylene	100 ppm	100.0									
5/12/2020 8:50	LLP	592-913262	0.0	Isobutylene	100 ppm	100.0									

APPENDIX E

1	Low Flow Perman	ling		ARM Group Inc. Earth Resource Engineers and Consultants						
	1 Of Indin				T					
Project Name:	B24 P2				Project Num	iber: 200	10226	[
Well Number:	624-001-1	Pt			Date 5/1/	1.020				
Well Diameter	(in): \		and a second second		One Well V	olume (gal):				
Depth to Produc	ct (ft): NGN	8			QED Contro	oller Setting	s;			
Depth to Water	(ft): 11,70		_		Flow Rate (1	nL/min)30	10			
Product Thickn	ess (ft):	_			Length of time Purged (min)					
Depth to Botton	n (ft): 19, 15				Condition of Pad/Cover:					
		11220		PURG	NG RECOR)	4505166			
Time	Volume Purged (gallons)	DTW (feet)	Temp (°C)	pH (s.u.) ± 0.1	Specific Conductance (ms/cm) $\pm 3\%$	Dissolved Oxygen (mg/L) ± 0.3	ORP (mV) ± 10	Turbidity (NTU) ± 10% or < 5	Comments	
0900	1.25	11.70	14,2	11.90	1,346	7.78	124.9	123		
0905	1.5	1	14.1	11.84	1.297	5.73	92.0	16		
0910	1.75		14.1	11.82	1.277	4.92	22.0	78.2		
0915	2		14.2	11,81	1.165	4,25	51.8	31.8		
0970	2.25		14.2	11.81	1.252	4.02	33.3	33.6		
0125	2.8		14.2	11.81	1.251	3,81	12,5	26.2		
0930	2.75	L.	14.2	11.80	1.248	3.67	3,5	19.8		
0235	3		14. 2	11.80	1,247	3.49	-1.7	21.4		
								,		
						1				
			МО	NITORIN	SAMPLE R	ECORD	THE R			
Sampl	e ID	Time C	Collected	Parame	eter/Order	Conta	ainer	Perservative	Collected?	
		-01.4		TCL	TCL-VOCs 3 - 40 mL VOA HCl				4	
374-001-1	12	0940		TPH	I-GRO	3 - 40 m	L VOA	HC1		
				TPH	I-DRO	2 - 1 L	Amber	none	•	
				TCL	SVOCs	2-1L	Amber	none		
				Oil &	Grease	2-1L.	Amber	HCl	1	
				TAL-	Metals &	1 - 250 m	L Plastic	HNO3	۸)	
				Mercu	iry (total)					
				Hexavale	at chromium	1 - 250 m	L Plastic	none	K)	
			oVA	Total	Cyanide	1 - 250 m	L Plastic	NaOH	И	
			clun	TAL	Metals &	1 250 11		Tuon		
		ł		Mercury	(Dissolved)	1 - 250 m	L Plastic	HNO3		
		1		Field	Filtered	1 2001		million		
							- they			
				Hexavale	nt Chromium		T D1			
				(Dis	solved)	$1 - 250 \mathrm{m}$	L Plastic	none	1	
				Field	Filtered					
	I	PCB	2 - 1 L	Amber	None	N				
			1	Aatrix Spik	e					
				Duplicate						
	L.M.		Commen	nts:						
Sampled	ву: <u>Л/()</u>									
	Cosing	olume: 1" I	$\mathbf{D}_{1} = 0.041$	val/ft - 2" I D	= 0.163 gal/ft - 4'	" L.D. = 0.653	gal/ft - 6" I I), = 1,47 ga]/ft		
	<u>Casing</u> v	orunic, 1 1	·	ftx	gal/ft =	(gal)	G 7 101	Bento		

1	Low Flow Permane	Samp ent We	ling lls		ARM Group Inc. Earth Resource Engineers and Consultants					
Project Name:	R24 P)_				Project Nun	ber: 160	0724			
Well Number:	221-002	. P2			Date:	12020	(Of P I			
Well Diameter	(in): 1	10			One Well V	olume (gal)				
Depth to Produc	$ct(ft)$ $w \land v \land$				OED Contro	ller Setting	S.			
Depth to Water	(1):10 93	2			Flow Rate (1	mI /min) A	16			
Product Thickn)			L enoth of time Purged (min)					
Depth to Bottor	$\cos(H)$				Condition of	f Pad/Cover		1		
Depth to Botton		>		PURG	Condition of Pad/Cover.					
				1 UICO	Specific	Dissolved				
Time	Volume Purged (gallons)	DTW (feet)	Temp (°C)	pH (s.u.) ± 0.1	Conductance (ms/cm) ± 3%	Oxygen (mg/L) ± 0.3	ORP (mV) ± 10	Turbidity (NTU) ± 10% or < 5	Comments	
1040	1.16	10.93	5.2	8.67	0.249	10.71	-130.9	22.8		
1045	1,4		14.9	8,42	0.347	4.66	-179.1	19.3		
1050	1.7		14.7	8.57	0.345	3.81	-182.2	7.84		
1055	2		15.0	8:56	0,247_	3.35	-100. L	8.41		
0011	2.3		15,0	8.56	0.340	3.03	-216,5	4.87		
105	2.6		15.1	8.55	0.339	2.82	120.3	5.26		
Illo	2.9	V	15.1	8.54	6 228	2.15	-1230	1.72		
			1-2-1-	-012	-0-990-			-1-14-		
_										
518183121		in the	MO	NITORINO	SAMPLE B	ECORD	Sugar B	WHAT WAS	THE COMPANY AND	
Sampl	e ID	Time (ollected	Parame	ter/Order	Conts	iner	Perservative	Collected?	
Sampr		THUCC	onceteu	TCI	TCL-VOCs 3-40 mL VOA HCl 4					
024-003-F	't	1115				3 - 40 m		HCI		
BL				TPL		2 - 1 I	Amber	none		
				TCL	SVOCs	2-1L/	Amber	none		
				Oil &	Grease	2-1L	Amber	HC1		
				TAL-I	Metals &	1 000	T. D1		1	
				Mercu	ry (total)	1 - 250 m	L Plastic	HNO3	N	
				Hexavaler (t	nt Chromium otal)	1 - 250 m	L Plastic	none	N	
			Jail	– Total	Cyanide	1 - 250 m	L Plastic	NaOH		
			Q	TAL-1	Metals &				1	
				Mercury	(Dissolved)	1 - 250 m	L Plastic	HNO3		
				Field	Filtered					
				Hexavaler (Dis	nt Chromium solved)	1 - 250 m	L Plastic	none		
				Field	Filtered					
					CB	2 1 T	Amber	None		
		N	I atrix Snik	e		a minoel	INDIE	- A)		
				Duplicate						
***			Commen	ts:						
Sampled I	By: LMG	N	o o minion							
	Casing V	olume: 1" I.	D. = 0.041 g	al/ft - 2" I.D. = ft_x	= 0.163 gal/ft - 4" gal/ft =	1.D. = 0.653 g	gal/ft - 6" I.D	e. = 1.47 gal/ft		

Low Flow Sampling Permanent Wells ACK Oroup InC. Enth Resource Engineers and Consultance Project Number: ? (C) [O] / [Well Number: ? (C) [O] /	1												
Permanent WellsEarth Resource Engineers and ConsoltantsProject Name: $p.24 P_2$ Project Number: $2n_3 (Q/2)^4$ Well Number: $2n_3 (Q/2)^4$ Well Number: $2n_3 (Q/2)^4$ One Well Volume (gal):One Well Volume (gal):One Well Volume (gal):One Well Volume (gal):Depth to Bottom (fb: $13, Q$ PURGING RECORDTime:Purged (min)Tume:Purged (min)Condition of Pad/Cover:Tume:Purged (min)Tume:Purged (min]	Low Flow	Samp	ling		mur Ch	AKI	vi Gi	coup Ir	1C.			
Project Name: $p, 2, 4 = 0, 2 = 0$ Project Number: $p, 2, 4 = 0, 2 = 0$ Date: $1/p_2/1/2/L$ Well Number: $p, 2, 4 = 0, 2 = 0$ Depth to Product (fb): p_1, p_2 Depth to Water (fb): p_1, q_2 Depth to Water (fb): p_1, q_2 Depth to Bottom (fb): $p_1 q_2$ PURCING RECORD Time DTW PHONE RECORD Time (gallows) DTW PURCING RECORD Time (gallows) DTW PURCING RECORD Time (gallows) DTW PHONE RECORD Total: (d, Q, R, Z) Total: (d, Q, R, Z) Total: (d, Q, R, Z) Total: (d, Q, R, Z) Total: (d, Q, R		Perman	ent We	lls		T	Earth Reso	ource Engir	neers and Consu	dtants			
Well Number: $2,24 - (3/2 - P.2)$ Date: $4/12/16/102/6$ Well Darmeter (in): 1 One Well Volume (gal): Depth to Forduct (ft): $(3,1)/4$ One Well Volume (gal): Depth to Forduct (ft): $(3,1)/4$ Product Thickness (ft): - Depth to Bottom (ft): $[3,1]/4$ Product Thickness (ft): - Depth to Bottom (ft): $[3,1]/4$ Product Thickness (ft): - Depth to Bottom (ft): $[3,1]/4$ Product Thickness (ft): - Disolved ORP ORP (ft): $[3,1]/4$ Product Thickness (ft): - Disolved ORP ORP (ft): $[3,1]/4$ Product Thickness (ft): - Disolved ORP ORP (ft): $[3,1]/4$ Product Thickness (ft): - Disolved ORP ORP (ft): $[3,1]/4$ Product Thickness (ft): - Product Thickness (ft): - (1	Project Name: 1	274 P7.				Project Num	nber: ?m	10774					
Well Diameter (in): \/	Well Number:	274-(177-	P2			Date: 4/20	3/1020						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Well Diameter	(in): \	1.6.			One Well V	olume (gal)	l)					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Depth to Produc	ct (ft): mh				QED Contro	oller Setting	s:					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Depth to Water	(ft):)(), 81				Flow Rate (mL/min) 4	00					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Product Thickn	ess (ft): -				Length of tim	me Purged (min)					
$\begin{array}{c c c c c c c } \hline \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Depth to Botton	n (ft): 17,08				Condition o	f Pad/Cover						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					PURGI	ING RECORD							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Volume			pH	Specific	Dissolved	ORP	Turbidity				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Time	Purged	DTW (foot)	Temp	(s.u.)	Conductance (ms/cm)	Oxygen (mg/L)	(mV)	(NTU)	Com	ments		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		(gallons)	(leet)	(0)	± 0.1	$\pm 3\%$	± 0.3	± 10	$\pm 10\%$ or < 5				
$\frac{1745}{1726} 1.9 10.8(12,3) 12.4(13,19) 6.03 -120, 6.03 -120, 6.03 -120, 6.03 -120, 6.05 -120, 7.03 -120, 7.05 -110, 7.05 -100, 7$	1215	1.5-	10.81	13,7	12.47	3186	2.14	-192	127				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1210	19	10.81	12 3	12.41	3.17	6.00	-174 0	101				
$ \frac{1125}{1230} 2.3 1230 1231 2.30 2.102 5.15 1123 13.2 13.2 12.20 2.102 1123 13.2 12.20 2.102 1123 12.20 1$	1112	22		12.7	12 46	3.191	5.52	-121.10	268				
$\frac{1750}{1240} = \frac{17}{3} + \frac{12}{12} + \frac{12}{3} + \frac{12}{3} + \frac{12}{3} + \frac{12}{3} + \frac{12}{3} + \frac{12}{4} + 1$	1000	77	1-1	12.0	17.39	2,102	5.15	-117.7	17.2				
$\begin{array}{c c c c c c c } \hline 12.40 & 13.4 & 12.31 & 3.703 & 4.74 & 14.74 & 14.72 & 4.66 \\ \hline 12.40 & 3.5 & 12.31 & 12.31 & 3.703 & 4.74 & 14.72 & 4.66 \\ \hline 12.40 & 3.5 & 12.43 & 12.31 & 3.703 & 4.74 & 14.72 & 4.66 \\ \hline 12.40 & 3.5 & 12.43 & 12.43 & 12.43 & 14.74 & 14.72 & 4.66 \\ \hline 12.40 & 12.43 & 12.43 & 12.43 & 12.43 & 12.44 & 14.74 & 14.72 & 4.66 \\ \hline 12.40 & 12.43$	125	21		13.8	12 29	3.211	4,94	- 114 6	672				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1240	1240 3.5 13.9 12.30				3.209	4.34	- 11 1 7 -	4 60				
$ \left \begin{array}{c c c c c } \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $		2,3	1		10101			-Hr e					
$ \left \begin{array}{c c c c c c } \hline \ \ \ \ \ \ \ \ \ \ \ \ \$			1										
$ \left \begin{array}{c c c c c c } \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $													
$ \begin{array}{ c c c c } \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $			1										
Image: state in the state interval of the state i													
Image: Sample ID Time Collected Parameter/Order Container Perservative Collected? Sample ID Time Collected Parameter/Order Container Perservative Collected? $g_24 - 023 \cdot 92$ 1245 TCL-VOCs 3 - 40 mL VOA HCl 9 $g_24 - 023 \cdot 92$ 1245 TCL-VOCs 3 - 40 mL VOA HCl 9 $g_24 - 023 \cdot 92$ 1245 TCL-VOCs 2 - 1 L Amber none 1 $g_24 - 023 \cdot 92$ 1245 TCL-VOCs 2 - 1 L Amber none 1 $g_24 - 023 \cdot 92$ 1245 TCL-VOCs 2 - 1 L Amber none 1 $g_24 - 023 \cdot 92$ 1245 TCL-VOCs 2 - 1 L Amber none 1 $g_24 - 023 \cdot 92$ 1245 TCL-VOCs 2 - 1 L Amber none 1 $g_24 - 023 \cdot 92$ TCL-VOCs 2 - 1 L Amber none 1 1 $g_24 - 023 \cdot 92$ TCL-VOCs 2 - 1 L Amber none 1 1 $g_24 - 023 \cdot 92$ TCL-VOCs 1 - 250 mL Plastic none 1 1 $g_24 - 023 \cdot 92$													
MONTORING SAMPLE RECORD Sample ID Time Collected Parameter/Order Container Perservative Collected? 024-023.??3 1245 TCL-VOCs 3-40 mL VOA HCl 9 1245 TPH-GRO 3-40 mL VOA HCl 1 1245 TPH-DRO 2-1 L Amber none 1 1-250 mL Plastic HNO3 1 1 1 1 1<250 mL Plastic													
Sample IDTime CollectedParameter/OrderContainerPerservativeCollected? $g_{2}4 - 023 \cdot 92$ 1245 TCL-VOCs $3 \cdot 40 \text{ mL VOA}$ HCl 4 $g_{2}4 - 023 \cdot 92$ 1245 TPH-GRO $3 \cdot 40 \text{ mL VOA}$ HCl 4 TPH-DRO $2 \cdot 1 \text{ L}$ Ambernone 4 4 TCL-SVOCs $2 \cdot 1 \text{ L}$ Ambernone 4 TCL-SVOCs $2 \cdot 1 \text{ L}$ Ambernone 4 TCL-SVOCs $2 \cdot 1 \text{ L}$ Ambernone 4 TCL-Watals & Mercury (total) $1 \cdot 250 \text{ mL Plastic}$ HNO3 4 Hexavalent Chronium (total) $1 \cdot 250 \text{ mL Plastic}$ none 4 TAL-Metals & Mercury (Dissolved) $1 \cdot 250 \text{ mL Plastic}$ NaOH 4 Hexavalent Chronium (Dissolved) $1 \cdot 250 \text{ mL Plastic}$ none 4 Hexavalent Chronium (Dissolved) $1 \cdot 250 \text{ mL Plastic}$ none 4 Hexavalent Chronium (Dissolved) $1 \cdot 250 \text{ mL Plastic}$ none 4 Hexavalent Chronium (Dissolved) $1 \cdot 250 \text{ mL Plastic}$ none 4 Hexavalent Chronium (Dissolved) $1 \cdot 250 \text{ mL Plastic}$ none 4 PCB $2 \cdot 1 \text{ L}$ AmberNone 4 PCB $2 \cdot 1 \text{ L}$ AmberNone 4 Hexavalent Chronium (Dissolved) $1 \cdot 250 \text{ mL Plastic}$ $1 \cdot 250 \text{ mL Plastic}$ $1 \cdot 250 \text{ mL Plastic}$ HordPCB $2 \cdot 1 \text{ L}$ AmberNone $4 \cdot 1 \cdot $	S. BOOKS		日本現在	МО	NITORING	SAMPLE F	RECORD	11/201					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Sampl	e ID	Time C	Collected	Parame	eter/Order	Cont	ainer	Perservative	Coll	ected?		
B24-027.92 1245 TPH-GRO 3 - 40 mL VOA HCl ////////////////////////////////////		Contraction of the local distance		-	TCL	-VOCs	3 - 40 m	L VOA	HC1	4			
TPH-DRO 2 - 1 L Amber none	214-027.1	12	1243		TPH	I-GRO	3 - 40 m	L VOA	HC1	1			
TCL-SVOCs 2-1 L Amber none Oil & Grease 2-1 L Amber HCl TAL-Metals & Mercury (total) 1 - 250 mL Plastic HNO3 Hexavalent Chromium (total) 1 - 250 mL Plastic none TAL-Metals & Mercury (total) 1 - 250 mL Plastic NaOH TAL-Metals & Mercury (Dissolved) 1 - 250 mL Plastic NaOH TAL-Metals & Mercury (Dissolved) 1 - 250 mL Plastic NaOH Hexavalent Chromium (Dissolved) 1 - 250 mL Plastic HNO3 Hexavalent Chromium (Dissolved) 1 - 250 mL Plastic HNO3 PCB 2 - 1 L Amber None PCB 2 - 1 L Amber None Matrix Spike Juplicate Juplicate Juplicate					TPH	I-DRO	2 - 1 L	Amber	none				
Oil & Grease 2-1 L Amber HCl TAL-Metals & Mercury (total) 1 - 250 mL Plastic HNO3 Hexavalent Chromium (total) 1 - 250 mL Plastic none TAL-Metals & Mercury (total) 1 - 250 mL Plastic NaOH TAL-Metals & Mercury (Dissolved) 1 - 250 mL Plastic NaOH TAL-Metals & Mercury (Dissolved) 1 - 250 mL Plastic NaOH Hexavalent Chromium (Dissolved) 1 - 250 mL Plastic HNO3 Field Filtered 1 - 250 mL Plastic none PCB 2 - 1 L Amber None Matrix Spike Duplicate					TCL	SVOCs	2-1L.	Amber	none				
TAL-Metals & Mercury (total) 1 - 250 mL Plastic HNO3 Hexavalent Chromium (total) 1 - 250 mL Plastic none TAL-Metals & (total) 1 - 250 mL Plastic NaOH TAL-Metals & Mercury (Dissolved) 1 - 250 mL Plastic NaOH TAL-Metals & Mercury (Dissolved) 1 - 250 mL Plastic NaOH Hexavalent Chromium (Dissolved) 1 - 250 mL Plastic HNO3 Hexavalent Chromium (Dissolved) 1 - 250 mL Plastic none PCB 2 - 1 L Amber None Matrix Spike Juplicate Juplicate Juplicate					Oil &	Grease	2-1L	Amber	HC1				
Mercury (total) Image: Constraint of the constraint of t					TAL-	Metals &	1 - 250 m	L Plastic	HNO3				
Image: Analysis of the control of t					Mercu	iry (total)							
Image: Control (control) Image: Control					Hexavalei	atal)	1 - 250 m	L Plastic	none				
TAL-Metals & Mercury (Dissolved) Field Filtered 1 - 250 mL Plastic HNO3 Hexavalent Chromium (Dissolved) Field Filtered 1 - 250 mL Plastic none PCB 2 - 1 L Amber None Matrix Spike Duplicate 1	1			CVQ1	- Total	Cvanide	1 - 250 m	L Plastic	NaOH				
Mercury (Dissolved) 1 - 250 mL Plastic HNO3 Field Filtered Hexavalent Chromium (Dissolved) 1 - 250 mL Plastic none Field Filtered 1 - 250 mL Plastic none None PCB 2 - 1 L Amber None None Matrix Spike Duplicate				for.	TAL-	Metals &							
Field Filtered Image: Second					Mercurv	(Dissolved)	1 - 250 m	L Plastic	HNO3				
Hexavalent Chromium (Dissolved) Field Filtered PCB 2 - 1 L Amber None Natrix Spike Duplicate					Field	Filtered							
Hexavalent Chrommun (Dissolved) Field Filtered 1 - 250 mL Plastic none PCB 2 - 1 L Amber None Matrix Spike					II.	at Clanomium							
Field Filtered 1 - 250 Hill Y lastic Holic PCB 2 - 1 L Amber None Matrix Spike Duplicate					Hexavaler (Dia	nt Unromium	1 250 m	J. Plastic	nona				
PCB 2 - 1 L Amber None Matrix Spike Duplicate					(Dis Field	Solved)	1 - 250 11	IL i lastic	none				
PCB 2 - 1 L Amber None Matrix Spike					r leiù	r mer eu							
Duplicate	b		1		I I	PCB	2-1L	Amber	None	N			
Dupicate				N	Aatrix Spik	e							
Commenter				IC.	Duplicate								
Comments:	Sampled	Dar Inal		Commer	ns:								
Sampled Dy	Sampled	Dy WIG											
<u>Casing Volume:</u> 1" I.D. = 0.041 gal/ft - 2" I.D. = 0.163 gal/ft - 4" I.D. = 0.653 gal/ft - 6" I.D. = 1.47 gal/ft		Casing V	/olume: 1" I	.D. = 0.041 g	gal/ft - 2" I.D.	= 0.163 gal/ft - 4	" I.D. = 0.653	gal/ft - 6" I.I). = 1.47 gal/ft				

]	Low Flow Sampling Permanent Wells					ARM Group Inc. Earth Resource Engineers and Cousultants						
Project Name:	B24 P2				Project Num	nber: 100) (0224					
Well Number:	B24-034-	PZ			Date: 4/29	120	,					
Well Diameter	(in): [One Well V	olume (gal)	:					
Depth to Produ	ct (ft): nov	1			QED Contro	oller Setting	s:					
Depth to Water	(ft): 10, 07				Flow Rate (1	mL/min) 23	07					
Product Thickn	ess (ft): -				Length of ti	me Purged (min)					
Depth to Botton	m (ft): \[0.5	1			Condition of Pad/Cover:							
	an still and			PURGI	NG RECOR	D						
Time	Volume Purged (gallons)	DTW (feet)	Temp (°C)	pH (s.u.) ± 0.1	Specific Conductance (ms/cm) + 3%	Dissolved Oxygen (mg/L) + 0.3	ORP (mV) ± 10	Turbidity (NTU) ± 10% or < 5	Comments			
1400	15	1002	10 1	10.95	1 819	5.30	-141.2	154				
WAS	18	12:24	205		0.825	4.10	-1105.9	112				
1TU)	2		10.5	11.74	6.800	3.61-	-121.1	- 10.11				
1710	7.1		1013	11.27	0.855	3.23	-181 3	621				
1420	23		10.10	11,110	2850	2.95	-189.2	4.76				
1120	425 3 21.0 11.29				2.80-9	1 80	-1919	5.45				
17/5			DITO	111.01	Cuest	1.00						
			MO	NITORING	S SAMPLE F	RECORD						
Course		Time	allastad	Daramo	tor/Order	Cont	ainer	Parcarvativa	Collected?			
Sampl	le ID	Time C	onected	Farante	VOCa	2 40 m		HC1				
000.034-	92	11120	>	TCL-VOCs 3-40 TPH-GRO 3-40				HC1				
BL9-0-		175		ТРН	TPH-GRO 3 - 401 TPH-DRO 2 - 11			none				
				TCL	SVOCs	2-1L	Amber	none				
				Oil &	2-1 L Amber none							
				TAL-	Metals &	1 250	T Dla et a					
				Mercu Hexavaler	ry (total) 1t Chromium	1 - 250 m	L Plastic	HNO3				
				(t	otal)	1 - 250 H		none				
		1	Parki	- Total	Cyanide	1 - 250 m	L Plastic	NaOH	<u> </u>			
			,	TAL- Mercury Field	Metals & (Dissolved) Filtered	1 - 250 m	L Plastic	HNO3				
Hexava (I Fie					nt Chromium solved) Filtered	1 - 250 m	L Plastic	none				
				F	СВ	2-1L	Amber	None	N			
			N	Matrix Spik	e							
				Duplicate	1							
Sampled	By: LMG		Commer	nts:	X							
	Casing V	'olume: 1" I	. D . = 0.041 §	gal/ft - 2" I.D. ft x	= 0.163 gal/ft - 4 gal/ft =	" I.D. = 0.653 (gal)	gal/ft - 6" I.D). = 1.47 gal/ft				

]	Low Flow Sampling Permanent Wells					ARM Group Inc. Earth Resource Engineers and Consultants						
Project Name: 5	324 P2				Project Num	1ber: 2001	0224		_			
Well Number:	P-24-02E	5-27			Date: 4/29	12020	-					
Well Diameter	(in): \				One Well V	olume (gal)						
Depth to Produ	ct (ft): TON	-			QED Contro	oller Setting	s:					
Depth to Water	(ft): 11 7.91				Flow Rate (mL/min)3	00					
Product Thickn	ess (ft):-				Length of ti	me Purged (min)					
Depth to Bottor	m (ft): 9,8				Condition o	f Pad/Cover	: Hone	/ nono				
		7 163	1000	PURG	NG RECOR	D			ta entre	CHI SAM		
Time	Volume Purged (gallons)	DTW (feet)	Temp (°C)	pH (s.u.) ± 0.1	Specific Conductance (ms/cm) ± 3%	Dissolved Oxygen (mg/L) ± 0.3	ORP (mV) ± 10	Turbidity (NTU) ± 10% or < 5	Co	omments		
1030	1.5	11 79	15.9	9.13	10.859	10.65	188.9	12.1	lea	r		
1035	1.9	11.37	10.0	9.10	7.112	5.44	170.3	10.15	0.2			
1040	2.3	9.09	3.022	4.71	101.3	7.62						
1045 2.7 15.10 9.08					10,971	4,21	46.9	8.41				
1050 3.1 16.0 9.0-1					16.971	3.83	16.5	5.11				
1055 315 15.8 9.06					1.973	3.56	-15.9	3.49				
0611	100 3.9 16.0 9.00					3.35	-21.2	1.75				
1105	05 4.3 11.79 110.1 9.04					3.20	-20.4	1.21				
		1.1.1						1				
Paul and the second			MO	NITORING	SAMPLE R	ECORD						
Sampl	e ID	Time C	collected	Parame	eter/Order	Conta	ainer	Perservative	Co	llected?		
		1		TCL	-VOCs	3 - 40 m	L VOA	HC1	И			
		1110		TPF	I-GRO	3 - 40 m	L VOA	HCl	J			
014-035	5-12			TPH	I-DRO 2 - 1 L Amber none							
DL1-				TCL	SVOCs 2-1 L Amber none							
				Oil &	z Grease 2-1 L Amber HCl							
				TAL-I Mercu	Metals & ry (total)	1 - 250 m	L Plastic	HNO3				
				Hexavaler (t	nt Chromium otal)	1 - 250 m	L Plastic	none				
2			LON	Fotal	Cyanide	1 - 250 m	L Plastic	NaOH				
			~	TAL- Mercury Field	Metals & (Dissolved) Filtered	1 - 250 m	L Plastic	HNO3				
				Hexavaler (Dis Field	nt Chromium solved) Filtered	1 - 250 m	L Plastic	none				
PCF						2-1T	Amber	None	N1			
		L	N	Matrix Snik	e	<u> </u>		TIONE				
Î				Duplicate								
			Commer	nts:					Automatica and			
Sampled	Sampled By: 1 mg											
	<u>Casing Volume:</u> 1" I.D. = 0.041 gal/ft - 2" I.D. = 0.163 gal/ft - 4" I.D. = 0.653 gal/ft - 6" I.D. = 1.47 gal/ft ft x gal/ft = (gal)											

]	Low Flow Sampling Permanent Wells				ARM Group Inc. Earth Resource Engineers and Consultants						
Project Name	B24 P2				Project Num	ber: 200	1004				
Well Number:	P24-C	210-P	2		Date: <-/	116					
Well Diameter	(in):	CW I	1		One Well Vo	olume (gal):					
Depth to Produc	ct (ft)				OED Contro	ller Setting	s:				
Depth to Water	(1): 12 45	,			Flow Rate (r	nL/min) 30	Ø				
Product Thickn	ess (ft):				Length of tir	ne Purged (min)				
Depth to Bottor	n (ft): 27 (2			Condition of Pad/Cover:						
Depin to Dotton	n (19. 02. 1	4		PURG	URGING RECORD						
		1			Specific	Dissolved	OBB	Turbidity			
Time	Volume Purged (gallons)	DTW (feet)	Temp (°C)	pH (s.u.) ± 0.1	Conductance (ms/cm) ± 3%	Oxygen (mg/L) ± 0.3	(mV) ± 10	(NTU) $\pm 10\%$ or < 5	Comments		
1235	15	12.48	17.2	11.62	2.854	6.00	204.8	89.7			
1240	1.8		18.5	11.59	7.296	4.38	- 732.0	68.2			
1245	2.1		18.5	11.59	3.388	3,52	-253.	32.4			
1250	2.4		18.6	11.09	3.457	3,00	- 3-230	827.6			
1255	2, 9		18.1	16.11	3,524	2.105	- 300.8	18.9			
1200	1300 3 18.0 11.61				3,536	2.50	-310.7	9.34			
1305	3.3		5.81	1159	3,620	2.31	- 320.4	4.02			
	<u> </u>			- hite - here							
and strategical de	ALL STREET		MO	NITORIN	G SAMPLE R	RECORD	Such for				
Sampl	le ID	Time C	Collected	Param	eter/Order	Cont	ainer	Perservative	Collected?		
				TCI	-VOCs	3 - 40 m	L VOA	HCl	<u>и</u>		
	PZ	1310		TPI	TPH-GRO 3 - 40 mL VOA HCl			HC1	1		
274.030	\ -	1011		TPI	TPH-DRO 2 - 1 L Amber none						
U				TCL	-SVOCs 2-1 L Amber none /						
				Oil &	& Grease 2-1 L Amber HCl						
				TAL-	Metals &	1 - 250 m	L Plastic	HNO3	\`		
				Merci	ury (total)				N		
				Hexavale	nt Chromium	1 - 250 m	nL Plastic	none	N)		
1		1		() ()	total)	1 250 m	J. Dlastic	NoOH	II.		
			1:460		Motola &	1 - 250 II	IL I lastic	NaOII			
				IAL-	(Dissolved)	1 - 250 m	J. Plastic	HNO3			
				Field	(Dissolved)	1 - 250 m	IL I lastie	milli			
1				Field	Thuru						
1				Hexavale	nt Chromium						
				(Dis	ssolved)	1 - 250 n	nL Plastic	none	V		
	Fie				Filtered						
F					PCB	2 - 1 L	Amber	None	(1		
	Matrix Spike										
	Duplicate										
	Comments:										
Sampled	By: Unk		1								
-	Casing	olume: 1"	$D_{0} = 0.041$	val/ft - 2" I.D.	= 0.163 gal/ft - 4	" I.D. = 0.653	gal/ft - 6" I.I). = 1.47 gal/ft			

L	Low Flow Sampling Permanent Wells					ARM Group Inc. Earth Resource Engineers and Consultants					
	Perman	ent Wel	IS		T	CHERE (CASO	are nagae	the second second sec			
Project Name:	51) (Grow	rdwa	sper	Project Number: 20010304						
Well Number:	The	2-2.	zmoc	9	Date: 9/17/20						
Well Diameter (in): 2	and the second se			One Well Vo	lume (gal):		the second second second			
Depth to Produc	t (ft):	4			QED Control	ler Settings					
Depth to Water	(A)·	0 24	1		Flow Rate (mL/min)						
Depui to Water	(IC).		and a second second		Length of tin	ne Purged (min) Zi	0			
Product Thicking		9.5-	1		Condition of	Pad/Cover	Ner	12/ OK			
Depth to Botton	<u>1 (11).</u>	11/2		PURGI	ING RECORD						
1	and the state of the second			лЦ	Specific	Dissolved	ORP	Turbidity			
	Volume	DTW	Temp	(\$11)	Conductance	Oxygen	(mV)	(NTU)	Comments		
Time	(gallons)	(feet)	(°C)	± 0.1	(ms/cm)	(mg/L) + 0.3	± 10	$\pm 10\%$ or < 5			
	(ganons)				± 3%	11/12	-410	490			
829	0.0	10.24	18.27	11.54	1.592	19/12	1/26	1.00			
834	834 0.4 10.24 18 18 11.					1,19	14.3.10	x. 13			
839	839 0.8 10.24 18.61 11.					11.87	-180.9	2.12			
814	1.21	10 24	18.73	11.90	1.686	11.90	-183.7	1.64			
210	849 1.6 10.24 18.79 11					11.91	-191.2).41			
849 1.6 10.00 10111											
							1				
							1				
								î			
The second second	100	111122	MO	NITORIN	G SAMPLE F	RECORD			A DE CARAN		
		Time	Collected	Ратат	eter/Order	Con	tainer	Perservative	Collected?		
Samp		I mie v	Concelle	TOT	TCL-VOCs 3 - 40 mL VOA HCl			HC1	У		
					TPH-GRO 3-40 mL VOA			HC1	Ý		
						2-11	Amber	none	4		
and the second second		-		IP	SVOCe	2-11	Amber	none	4		
	0			PRI ICI	-SVUUS	2-1L 2_1T	Amher	HC1	Ń		
	0				X Grease	2-11	1 311001				
	2			IAL	-iviciais &	1 - 250 1	nL Plastic	HNO3	I Y		
1	V			Merc	ury (total)				1/		
R	e N		1	Hexavale	ant Chronnun	1 - 250 1	nL Plastic	none	IΥ		
/		d	50	Tata	(otal)	1 - 250	mL Plastic	NaOH	V		
v,		0.			Natala 0	1-200	ALL A IMUTIC		1		
AND				TAL	-ivietals &	1 250	mI Diantic	HINO3			
(\land)				Mercury	y (Dissolved)	1 - 2301	uil riastic	IIII03	γ γ		
				Field	d Filtered			6			
				Hevevel	ent Chromiur	n					
	Hexa					1 - 250	mL Plastic	none			
						1 200					
						2 - 1	L Amber	None	1 N		
				Matrix Sp	ike				N		
Duplicate								IN			
Sample	d Bv:		Comm	ents:	07.150 a	menod	de cy	ranide			
Dumpio					v		L	,	and the second second second		
12	Contraction of the local division of the loc		2 I D = 0.04	gal/ft - 2" [.]	$0_{*} = 0.163 \text{ gal/ft} -$	4" I.D. = 0.6	53 gal/ft - 6" I .	D. = 1.47 gal/ft			
	Casin	g volume: 1	1.0 0.0-	Bante	-	1.0					

1	Low Flow Permane	Sampl nt We	ing lls		ARM Group Inc. Earth Resource Engineers and Consultants						
Project Name	End 1	Mai a La	12 CI	2	Project Number: 200/0304						
Wall Number:	TA 02	011	2004		Date:	A DECEMBER OF THE OWNER OF	86	120			
Well Diameter	(in):	PEI	0001		One Well Vo	lume (gal):					
Well Dialieter	(III).				OED Contro	ller Settings					
Depth to Produc	(0)	VA			Flow Rate (mL/min) 303						
Depth to water	(II): <u>8</u> -	31	-		Length of tin	ne Purged (min) 3	0			
Product Thickn	less (ft): //	R			Condition of	Pad/Cover	Die	aclora r			
Depth to Botton	m (ft): (3	. 10		PURGI	NG RECORD)	po	or poor			
					Specific	Dissolved	0.0.0.0	Truchidity			
	Volume	DTW	Temp	pH	Conductance	Oxygen	(mV)		Comments		
Time	Purged	(feet)	(°C)	(s.u.) + 0.1	(ms/cm)	(mg/L)	± 10	$\pm 10\% \text{ or } < 5$	Containents		
	(gallons)			± 0.1	± 3%	± 0.3					
849	2.6	8.37	21.96	10.96	0.597	5112	-256	39.9			
854	3.0	8.37	22.12	11.13	0.599	1.10	-268	28.5			
950	2.4	8.37	22.23	11.20	0.597	0.81	-2.89	22.7			
and	2.9	8.37	22.31	11.73	6.593	0.69	-301	16,9 1			
000	909 4.2 8.37 22.38 11.7					0 64	-292	6141			
	914 46 837 22.48 11.2					0.59	-301	4.97			
910	Q19 50 730 22.54 11.25				0.526	0.57	- 293	3 55			
arg	5.0	6.51	10.51	11.09	0.510	0.57					
	-										
			мо	NITORING	SAMPLE R	ECORD					
Samn	le ID	Time (Collected	Рагат	eter/Order	Cont	ainer	Perservative	Collected?		
Buinp		-		TCL	TCL-VOCs 3 - 40 mL VOA HCl 🖌						
				TPF	TPH-GRO 3 - 40 mL VOA HCl				ý –		
				TPH	I-DRO	2 - 1 L Amber		none	4		
-	1			TCL	SVOCs	2-1L	Amber	none	~~		
	4			Oil 8	z Grease	2-1 L	Amber	HC1	<i>'</i> Y		
	00)			TAL-	Metals &	1 050	T. Dlast's				
	allo	1		Mercu	ry (total)	1 - 250 m	IL Plastic	HN03	1		
C	v			Hexavale	nt Chromium	1 250 -	J. Dlastia	2020	¥		
15	\	1	0	()	total)	1 - 250 п	iL Plastic	none	/		
65		01	Q	Total	Cyanide	1 - 250 n	nL Plastic	NaOH	V		
M		I NI		TAL-	Metals &						
14.		1		Mercury	(Dissolved)	1 - 250 n	nL Plastic	HNO3	У		
		1		Field	Filtered		á.				
					<u> </u>				,		
				Hexavale	nt Chromium	1	T D1 /		17		
						1 - 250 n	IL Mastic	none	У		
									1		
						2 - 1 L	Amber	None	N		
			Matrix Spil	ce				N			
				Duplicate					\mathbb{N}_{-}		
	1	10	Comme	nts:			X				
Sampleo	1 By:	LY		V	quall	Man	de al	50			
						0		-			
	Casing	Volume: 1"	I.D. = 0.041	gal/ft - 2" I.D.	= 0.163 gal/ft - 4	(mal)	gal/ft - 6" I.	D. = 1.47 gal/ft			
8				n x	gavit =	(gai)		and the second se	A REAL PROPERTY AND A REAL PROPERTY A REAL PROPERTY AND A REAL PROPERTY A REAL PROPERT		

TABLE 1 MULTIPARAMETER CALIBRATION LOG

 Project Name
 Area B Parcel B24 Phase II
 Date
 04-29-20

 Weather
 40s, Sunny
 2000
 2000

 Calibrated by
 L. Glumac
 Instrument (Serial Number)
 YSI Pro DSS (17t101940)

 Parameters
 Morning Calibration
 Morning Temperature
 End of Day Calibration
 End of Day Temperature

	Calibration		Calibration Check	Temperature
Specific Conductance Standard 1.413 mS/cm	1.413	43 F¥	1.874	65 F [¥]
Specific Conductance Standard #2	-		-	
pH (7)	7.00		6.93	
pH (4)	4.00		-	
pH(10)	10.00		-	
ORP Zobel Solution (240 mV)	240		232.7	
Dissolved Oxygen 100% water saturated air mg/L	-		-	
Dissolved Oxygen Zero Dissolved Oxygen Solution mg/L	11.04¥		10.44¥	
Barometric Pressure in. Hg	761.4		-	
Turbidity #1 (0 NTU)	0.0		-	
Turbidity #2 (1 NTU)	1.0¥		1.33 [¥]	
Turbidity #3 (10 NTU)	10		-	

[¥]Turbidity and Dissolved Oxygen were outside of the calibration acceptance criteria. Temperature is an estimate. Values displayed on field purge logs may be inaccurate.

TABLE 1 MULTIPARAMETER CALIBRATION LOG

Project Name Area B Parcel B24 Phase II Date 05-01-20 50s, Sunny Weather Calibrated by L. Glumac Instrument (Serial Number) <u>YSI Pro DSS (17t101940)</u>

Lamotte 2020t (1223-1319) Morning Morning Temperature End of Day End of Day

Т

Parameters	Morning Calibration	Morning Temperature	End of Day Calibration Check	End of Day Temperature
Specific Conductance Standard 1.413 mS/cm	1.413		1.642	
Specific Conductance Standard #2	-		-	
pH (7)	7.00		-	
pH (4)	4.00		4.08	
pH(10)	10.00		-	
ORP Zobel Solution (240 mV)	240		233.1	
Dissolved Oxygen 100% water saturated air mg/L	-		-	
Dissolved Oxygen Zero Dissolved Oxygen Solution mg/L	10.52		-	
Barometric Pressure in. Hg	766.5		-	
Turbidity #1 (0 NTU)	0.0		-	
Turbidity #2 (1 NTU)	1.0 [¥]		1.12 [¥]	
Turbidity #3 (10 NTU)	10		-	

^{*}Turbidity was outside of the calibration acceptance criteria. Values displayed on field purge logs may be inaccurate.

APPENDIX F

Parcel B24 - IDW Drum Log

Drum Identification Number	Designation	Activity/Phase	Contents	Open Date
1388-Liners-4/14/20-B24	Non-Haz	Parcel B24 Phase II Investigation	Liners	4/14/2020
1389-Soil-4/14/20-B24	Non-Haz	Parcel B24 Phase II Investigation	Soil	4/14/2020
1390-PPE-4/14/20-B24	Non-Haz	Parcel B24 Phase II Investigation	PPE	4/14/2020
1391-Decon water-4/14/20-B24/A14/A18/A17/B20/B22/B19	Non-Haz	Parcel B24 Phase II Investigation	Water	4/14/2020
1397-Nitric Acid-4/20/20-A14/B24/A18/A17/B20	Non-Haz	Parcel B24 Phase II Investigation	Nitric Acid	4/20/2020
1402-Purge water-4/29/20-B24,CPLF	Non-Haz	Parcel B24 Phase II Investigation	Water	4/29/2020

CRRGPFKZ'I "

QA/QC Tracking Log

<u>Trip</u> Dlanku				<u>Trip</u> Dlanku	D.		
Blank:	Date:	Sample IDs:		<u>Blank:</u>	Date:	Sample IDs:	
IBI		1) B24-001-SB-1				1) B24-005-SB-1	-
		2) B24-001-SB-5				2) B24-005-SB-4	
		3) B24-013-SB-1.5				3) B24-006-SB-1	
		4) B24-013-SB-5				4) B24-006-SB-4	
		5) B24-014-SB-1				5) B24-020-SB-1	-
		6) B24-014-SB-5			4/17/2020	6) B24-020-SB-8	
TB2	4/14/2020	7) B24-025-SB-1	Duplicate: B24-032-SB-5			7) B24-018-SB-1	Duplicate: B24-030-SB-4
		8) B24-025-SB-5	Date: 4/15/2020			8) B24-018-SB-5	Date: 4/17/2020
		9) B24-025-SB-10	MS/MSD: B24-025-SB-15			9) B24-030-SB-1	<u>MS/MSD:</u> B24-020-SB-8
		10) B24-026-SB-1	Date: 4/15/2020			10) B24-030-SB-9	Date: 4/17/2020
		11) B24-026-SB-5	Field Blank:			11) B24-031-SB-1	Field Blank:
		12) B24-026-SB-10	Date: 4/15/2020			12) B24-031-SB-5	Date: 4/17/2020
TB3		13) B24-026-SB-16	<u>Eq. Blank:</u>			13) B24-010-SB-1	Eq. Blank:
TB1		14) B24-025-SB-15	Date: 4/15/2020			14) B24-010-SB-5	Date: 4/17/2020
		15) B24-032-SB-1		TB1		15) B24-009-SB-1.5	
		16) B24-032-SB-5		TB2	4/20/2020	16) B24-009-SB-5	
	4/15/2020	17) B24-032-SB-10			4/20/2020	17) B24-017-SB-1	
TB2		18) B24-033-SB-1				18) B24-017-SB-5	
		19) B24-033-SB-5				19) B24-019-SB-1	
		20) B24-033-SB-10				20) B24-019-SB-5	
	4				•		
TB4		1) B24-036-SB-1				1) B24-029-SB-1	
		2) B24-036-SB-8				2) B24-029-SB-9	
	4/15/2020	3) B24-036-SB-10				3) B24-011-SB-1	
		4) B24-035-SB-1				4) B24-011-SB-4	
		5) B24-035-SB-4			4/20/2020	5) B24-012-SB-1	
		6) B24-003-SB-1				6) B24-012-SB-8	
		7) B24-003-SB-4	Duplicate: B24-004-SB-4			7) B24-012-SB-10	Duplicate: B24-029-SB-1
TB1		8) B24-004-SB-1	Date: 4/16/2020			8) B24-008-SB-1	Date: 4/20/2020
TB2		9) B24-004-SB-5	MS/MSD: B24-035-SB-4			9) B24-008-SB-5	MS/MSD: B24-012-SB-8
		10) B24-016-SB-1	Date: 4/15/2020	TB1		10) B24-007-SB-1	Date: 4/20/2020
		11) B24-016-SB-5	Field Blank:		1	11) B24-007-SB-5	Field Blank:
	4/16/2020	12) B24-015-SB-1	Date: 4/16/2020			12) B24-021-SB-1	Date: 4/20/2020
		13) B24-037-SB-1	Eq. Blank:			13) B24-021-SB-5	Eq. Blank:
		14) B24-037-SB-8	Date: 4/16/2020			14) B24-022-SB-1	Date: 4/20/2020
<u> </u>		15) B24-037-SB-10	Suc. 1/10/2020		4/21/2020	15) B24-022-SB-5	Sub. 1720/2020
1		16) B24-037-SB-10				16) B24-023-SB-1	
					4	10) 02-025-00-1	4
		17) B24-027-SB-1				17) B24-023-SB-5	
		17) B24-027-SB-1 18) B24-027 SB 5				17) B24-023-SB-5	
TR1		17) B24-027-SB-1 18) B24-027-SB-5				17) B24-023-SB-5 18) B24-024-SB-1 10) B24-024-SB-5	
TB1	4/17/2020	17) B24-027-SB-1 18) B24-027-SB-5 19) B24-002-SB-1 20) B24-002-SB-1				 17) B24-023-SB-5 18) B24-024-SB-1 19) B24-024-SB-5 20) B24-024-SD 1 	

Soil samples with a sustained PID reading of 10 ppm or greater were collected for VOCs.

VOC samples were placed in a cooler with a trip blank.

QA/QC Tracking Log

<u>Trip</u>				Trip			
Blank:	Date:	Sample IDs:		Blank:	Date:	Sample IDs:	
TB1		1) B24-034-SB-5				1) B24-035-PZ	
	4/21/2020	2) B24-028-SB-1		TB1	4/29/2020	2) B24-027-PZ	
		3) B24-028-SB-5				3) B24-034-PZ	
		4)				4) B24-001-PZ	
		5)		TB1	5/1/2020	5) B24-003-PZ	
		6)				6) B24-036-PZ	
		7)	Duplicate: B24-028-SB-1	TD 1	8/6/2020	7) TM03-PZM004	Duplicate: B24-034-PZ
		8)	Date: 4/21/2020	IDI	8/0/2020	8) TM02-PZM028	Date: 4/29/2020
		9)	MS/MSD: B24-028-SB-5	TB1	9/17/2020	9) TM02-PZM009	MS/MSD: B24-036-PZ
		10)	Date: 4/21/2020			10)	Date: 5/1/2020
		11)	Field Blank:			11)	Field Blank:
		12)	Date: 4/21/2020			12)	Date: 5/1/2020
		13)	<u>Eq. Blank:</u>			13)	Eq. Blank:
		14)	Date: 4/21/2020			14)	Date:
		15)				15)	
		16)				16)	
		17)				17)	
		18)				18)	
		19)				19)	
		20)				20)	

Soil samples with a sustained PID reading of 10 ppm or greater were collected for VOCs. VOC samples were placed in a cooler with a trip blank.

"

"

"

APPENDIX H

"

Parameter	Parameter Group	Matrix	Unit	Number of Validated Results	Detections	Number of Rejected Results	Number of Non-rejected Results	Completeness
Cyanide	CN	Soil	mg/kg	30	29	0	30	100.00%
Aluminum	Metal	Soil	mg/kg	30	30	0	30	100.00%
Antimony	Metal	Soil	mg/kg	30	2	0	30	100.00%
Arsenic	Metal	Soil	mg/kg	30	19	0	30	100.00%
Barium	Metal	Soil	mg/kg	30	30	0	30	100.00%
Beryllium	Metal	Soil	mg/kg	30	28	0	30	100.00%
Cadmium	Metal	Soil	mg/kg	30	28	0	30	100.00%
Chromium	Metal	Soil	mg/kg	30	30	0	30	100.00%
Chromium VI	Metal	Soil	mg/kg	30	13	8	22	73.33%
Cobalt	Metal	Soil	mg/kg	30	30	0	30	100.00%
Copper	Metal	Soil	mg/kg	30	30	0	30	100.00%
Iron	Metal	Soil	mg/kg	30	30	0	30	100.00%
Lead	Metal	Soil	mg/kg	30	30	0	30	100.00%
Manganese	Metal	Soil	mg/kg	30	30	0	30	100.00%
Mercury	Metal	Soil	mg/kg	30	27	0	30	100.00%
Nickel	Metal	Soil	mg/kg	30	30	0	30	100.00%
Selenium	Metal	Soil	mg/kg	30	0	0	30	100.00%
Silver	Metal	Soil	mg/kg	30	0	0	30	100.00%
Thallium	Metal	Soil	mg/kg	30	4	0	30	100.00%
Vanadium	Metal	Soil	mg/kg	30	30	0	30	100.00%
Zinc	Metal	Soil	mg/kg	30	30	0	30	100.00%
Aroclor 1016	PCB	Soil	mg/kg	16	0	0	16	100.00%
Aroclor 1221	PCB	Soil	mg/kg	16	0	0	16	100.00%
Aroclor 1232	PCB	Soil	mg/kg	16	0	0	16	100.00%
Aroclor 1242	PCB	Soil	mg/kg	16	0	0	16	100.00%
Aroclor 1248	PCB	Soil	mg/kg	16	0	0	16	100.00%
Aroclor 1254	PCB	Soil	mg/kg	16	10	0	16	100.00%
Aroclor 1260	PCB	Soil	mg/kg	16	12	0	16	100.00%
Aroclor 1262	PCB	Soil	mg/kg	16	0	0	16	100.00%
Aroclor 1268	PCB	Soil	mg/kg	16	0	0	16	100.00%
PCBs (total)	PCB	Soil	mg/kg	16	9	0	16	100.00%
1,1-Biphenyl	SVOC	Soil	mg/kg	30	3	0	30	100.00%
1,2,4,5-Tetrachlorobenzene	SVOC	Soil	mg/kg	30	0	0	30	100.00%
2,3,4,6-Tetrachlorophenol	SVOC	Soil	mg/kg	30	0	4	26	86.67%
2,4,5-Trichlorophenol	SVOC	Soil	mg/kg	30	0	4	26	86.67%
2,4,6-Trichlorophenol	SVOC	Soil	mg/kg	30	0	4	26	86.67%
2,4-Dichlorophenol	SVOC	Soil	mg/kg	30	0	4	26	86.67%
2,4-Dimethylphenol	SVOC	Soil	mg/kg	30	0	4	26	86.67%
2,4-Dinitrophenol	SVOC	Soil	mg/kg	30	0	4	26	86.67%
2,4-Dinitrotoluene	SVOC	Soil	mg/kg	30	0	0	30	100.00%
2,6-Dinitrotoluene	SVOC	Soil	mg/kg	30	0	0	30	100.00%
2-Chloronaphthalene	SVOC	Soil	mg/kg	30	0	0	30	100.00%
2-Chlorophenol	SVOC	Soil	mg/kg	30	0	4	26	86.67%
2-Methylnaphthalene	SVOC	Soil	mg/kg	28	25	0	28	100.00%
2-Methylphenol	SVOC	Soil	mg/kg	30	0	4	26	86.67%
2-Nitroaniline	SVOC	Soil	mg/kg	30	0	0	30	100.00%
3&4-Methylphenol(m&p Cresol)	SVOC	Soil	mg/kg	30	0	4	26	86.67%

Parameter	Parameter Group	Matrix	Unit	Number of Validated Results	Detections	Number of Rejected Results	Number of Non-rejected Results	Completeness
3,3'-Dichlorobenzidine	SVOC	Soil	mg/kg	30	0	0	30	100.00%
4-Chloroaniline	SVOC	Soil	mg/kg	30	0	0	30	100.00%
4-Nitroaniline	SVOC	Soil	mg/kg	30	0	0	30	100.00%
Acenaphthene	SVOC	Soil	mg/kg	28	25	0	28	100.00%
Acenaphthylene	SVOC	Soil	mg/kg	28	26	0	28	100.00%
Acetophenone	SVOC	Soil	mg/kg	30	0	0	30	100.00%
Anthracene	SVOC	Soil	mg/kg	28	27	0	28	100.00%
Benz[a]anthracene	SVOC	Soil	mg/kg	28	27	0	28	100.00%
Benzaldehyde	SVOC	Soil	mg/kg	30	0	0	30	100.00%
Benzo[a]pyrene	SVOC	Soil	mg/kg	28	26	0	28	100.00%
Benzo[b]fluoranthene	SVOC	Soil	mg/kg	28	27	0	28	100.00%
Benzo[g,h,i]perylene	SVOC	Soil	mg/kg	28	28	0	28	100.00%
Benzo[k]fluoranthene	SVOC	Soil	mg/kg	28	26	0	28	100.00%
bis(2-chloroethoxy)methane	SVOC	Soil	mg/kg	30	0	0	30	100.00%
bis(2-Chloroethyl)ether	SVOC	Soil	mg/kg	30	0	0	30	100.00%
bis(2-Chloroisopropyl)ether	SVOC	Soil	mg/kg	30	0	0	30	100.00%
bis(2-Ethylhexyl)phthalate	SVOC	Soil	mg/kg	30	2	0	30	100.00%
Caprolactam	SVOC	Soil	mg/kg	30	0	0	30	100.00%
Carbazole	SVOC	Soil	mg/kg	30	8	0	30	100.00%
Chrysene	SVOC	Soil	mg/kg	28	27	0	28	100.00%
Dibenz[a,h]anthracene	SVOC	Soil	mg/kg	28	27	0	28	100.00%
Diethylphthalate	SVOC	Soil	mø/kø	30	1	0	30	100.00%
Di-n-butylphthalate	SVOC	Soil	mø/kø	30	3	0	30	100.00%
Di-n-ocytlphthalate	SVOC	Soil	mg/kg	30	1	0	30	100.00%
Fluoranthene	SVOC	Soil	mg/kg	28	28	0	28	100.00%
Fluorene	SVOC	Soil	mg/kg	28	25	0	28	100.00%
Heyachlorobenzene	SVOC	Soil	mg/kg	30	0	0	30	100.00%
Hexachlorobutadiene	SVOC	Soil	mg/kg	30	0	0	30	100.00%
Hexachlorocyclopentadiene	SVOC	Soil	mg/kg	30	0	0	30	100.00%
Heyachloroethane	SVOC	Soil	mg/kg	30	0	0	30	100.00%
Indeno[1,2,3_c,d]pyrene	SVOC	Soil	mg/kg	28	28	0	28	100.00%
Isophoropa	SVOC	Soil	mg/kg	20	20	0	20	100.00%
Naphthalana	SVOC	Soil	mg/kg	28	0 27	0	28	100.00%
Nitrohonzono	SVOC	Soil	mg/kg	20	0	0	20	100.00%
N Nitroso di p propylamina	SVOC	Soil	mg/kg	30	0	0	30	100.00%
N-Nitroso-di-h-propyramme	SVOC	Soil	mg/kg	20	0	0	30	100.00%
N-Nitrosodiphenylamme	SVOC	Soll	mg/kg	20	0	0	30	86.670
Pentachiorophenol	SVOC	5011 Call	mg/kg	30	0	4	26	80.07%
	SVOC	S011	mg/kg	28	27	0	28	100.00%
Phenol	SVOC	Soll	mg/kg	30	0	4	26	86.67%
Pyrene Dia la Di	SVOC	Soil	mg/kg	28	28	0	28	100.00%
Diesel Range Organics	ТРН	Soil	mg/kg	30	30	0	30	100.00%
Gasoline Range Organics	TPH	Soil	mg/kg	30	0	0	30	100.00%
Oil & Grease	TPH	Soil	mg/kg	31	29	0	31	100.00%
1,1,1-Trichloroethane	VOC	Soil	mg/kg	6	0	0	6	100.00%
1,1,2,2-Tetrachloroethane	VOC	Soil	mg/kg	6	0	1	5	83.33%
1,1,2-Trichloro-1,2,2-Trifluoroethane	VOC	Soil	mg/kg	6	0	0	6	100.00%
1,1,2-Trichloroethane	VOC	Soil	mg/kg	6	0	0	6	100.00%

Parameter	Parameter Group	Matrix	Unit	Number of Validated Results	Detections	Number of Rejected Results	Number of Non-rejected Results	Completeness
1,1-Dichloroethane	VOC	Soil	mg/kg	6	0	0	6	100.00%
1,1-Dichloroethene	VOC	Soil	mg/kg	6	0	0	6	100.00%
1,2,3-Trichlorobenzene	VOC	Soil	mg/kg	6	0	0	6	100.00%
1,2,4-Trichlorobenzene	VOC	Soil	mg/kg	6	0	0	6	100.00%
1,2-Dibromo-3-chloropropane	VOC	Soil	mg/kg	6	0	0	6	100.00%
1,2-Dibromoethane	VOC	Soil	mg/kg	6	0	0	6	100.00%
1,2-Dichlorobenzene	VOC	Soil	mg/kg	6	0	0	6	100.00%
1,2-Dichloroethane	VOC	Soil	mg/kg	6	0	0	6	100.00%
1,2-Dichloroethene (Total)	VOC	Soil	mg/kg	6	0	0	6	100.00%
1,2-Dichloropropane	VOC	Soil	mg/kg	6	0	0	6	100.00%
1,3-Dichlorobenzene	VOC	Soil	mg/kg	6	0	0	6	100.00%
1,4-Dichlorobenzene	VOC	Soil	mg/kg	6	0	0	6	100.00%
2-Butanone (MEK)	VOC	Soil	mg/kg	6	1	0	6	100.00%
2-Hexanone	VOC	Soil	mg/kg	6	0	0	6	100.00%
4-Methyl-2-pentanone (MIBK)	VOC	Soil	mg/kg	6	0	0	6	100.00%
Acetone	VOC	Soil	mg/kg	6	0	0	6	100.00%
Benzene	VOC	Soil	mg/kg	6	1	0	6	100.00%
Bromodichloromethane	VOC	Soil	mg/kg	6	0	0	6	100.00%
Bromoform	VOC	Soil	mg/kg	6	0	0	6	100.00%
Bromomethane	VOC	Soil	mg/kg	6	0	0	6	100.00%
Carbon disulfide	VOC	Soil	mg/kg	6	2	0	6	100.00%
Carbon tetrachloride	VOC	Soil	mg/kg	6	0	0	6	100.00%
Chlorobenzene	VOC	Soil	mg/kg	6	0	0	6	100.00%
Chloroethane	VOC	Soil	mg/kg	6	0	0	6	100.00%
Chloroform	VOC	Soil	mg/kg	6	0	0	6	100.00%
Chloromethane	VOC	Soil	mg/kg	6	0	0	6	100.00%
cis-1 2-Dichloroethene	VOC	Soil	mg/kg	6	0	0	6	100.00%
cis-1 3-Dichloropropene	VOC	Soil	mg/kg	6	0	0	6	100.00%
Cyclohexane	VOC	Soil	mg/kg	6	1	0	6	100.00%
Dibromochloromethane	VOC	Soil	mg/kg	6	0	0	6	100.00%
Dichlorodifluoromethane	VOC	Soil	mg/kg	6	0	0	6	100.00%
Ethylbenzene	VOC	Soil	mg/kg	6	0	0	6	100.00%
Isopropylbenzene	VOC	Soil	mg/kg	6	0	0	6	100.00%
Methyl Acetate	VOC	Soil	mg/kg	6	0	0	6	100.00%
Methyl tert-butyl ether (MTBE)	VOC	Soil	mg/kg	6	0	0	6	100.00%
Methylene Chloride	VOC	Soil	mg/kg	6	0	0	6	100.00%
Styrene	VOC	Soil	mg/kg	6	0	0	6	100.00%
Tetrachloroethene	VOC	Soil	mg/kg	6	0	0	6	100.00%
Toluene	VOC	Soil	mg/kg	6	1	0	6	100.00%
trans 1.2 Dichloroethene	VOC	Soil	mg/kg	6	0	0	6	100.00%
trans 1.3 Dichloropropaga	VOC	Soil	mg/kg	6	0	0	6	100.00%
Trichloroethene	VOC	Soil	mg/kg	6	0	0	6	100.00%
Trichlorofluoromethane	VOC	Soil	mg/kg	6	0	0	6	100.00%
Vinul chloride	VOC	Soil	mg/kg	6	0	0	6	100.00%
Yulanes	VOC	Soil	mg/kg	6	0	0	6	100.00%
1 4 Diovono	VOC/SVOC	Soll	mg/Kg	0	0	0	0	0.000/
1,4-DIOXalle		S011 Weter	mg/Kg	0	0	0	0	100.00%
Available Cyanide	CN	water	ug/L	3	3	0	5	100.00%

Parameter	Parameter Group	Matrix	Unit	Number of Validated Results	Detections	Number of Rejected Results	Number of Non-rejected Results	Completeness
Total Cyanide	CN	Water	ug/L	3	3	0	3	100.00%
Aluminum	Metal	Water	ug/L	3	3	0	3	100.00%
Antimony	Metal	Water	ug/L	3	0	0	3	100.00%
Arsenic	Metal	Water	ug/L	3	1	0	3	100.00%
Barium	Metal	Water	ug/L	3	3	0	3	100.00%
Beryllium	Metal	Water	ug/L	3	0	0	3	100.00%
Cadmium	Metal	Water	ug/L	3	1	0	3	100.00%
Chromium	Metal	Water	ug/L	3	3	0	3	100.00%
Chromium VI	Metal	Water	ug/L	3	2	0	3	100.00%
Cobalt	Metal	Water	ug/L	3	1	0	3	100.00%
Copper	Metal	Water	ug/L	3	0	0	3	100.00%
Iron	Metal	Water	ug/L	3	1	0	3	100.00%
Lead	Metal	Water	ug/L	3	0	0	3	100.00%
Manganese	Metal	Water	ug/L	3	1	0	3	100.00%
Mercury	Metal	Water	ug/L	3	0	0	3	100.00%
Nickel	Metal	Water	119/L	3	1	0	3	100.00%
Selenium	Metal	Water	110/L	3	0	0	3	100.00%
Silver	Metal	Water	110/L	3	0	0	3	100.00%
Thallium	Metal	Water	110/L	3	0	0	3	100.00%
Vanadium	Metal	Water	ug/L	3	3	0	3	100.00%
Zinc	Metal	Water	ug/L	3	1	0	3	100.00%
1 1-Rinhenyl	SVOC	Water	ug/L 110/I	3	0	0	3	100.00%
1.2.4.5 Tetrachlorobenzene	SVOC	Water	ug/L	3	0	0	3	100.00%
2.3.4.6 Tetrachlorophenol	SVOC	Water	ug/L	3	1	0	3	100.00%
2,4,5 Trichlorophenol	SVOC	Water	ug/L	3	1	0	3	100.00%
2,4,5-Trichlorophenol	SVOC	Water	ug/L	2	0	0	2	100.00%
2,4,0-Themorophenol	SVOC	Water	ug/L	2	0	0	2	100.00%
2,4-Dichorophenoi	SVOC	Water	ug/L	3	0	0	3	100.00%
	SVOC	water	ug/L	3	1	0	3	100.00%
2,4-Dinitrophenol	SVOC	water	ug/L	3	0	0	3	100.00%
2,4-Dinitrotoluene	SVOC	Water	ug/L	3	0	0	3	100.00%
2,6-Dinitrotoluene	SVOC	Water	ug/L	3	0	0	3	100.00%
2-Chloronaphthalene	SVOC	Water	ug/L	3	l	0	3	100.00%
2-Chlorophenol	SVOC	Water	ug/L	3	0	0	3	100.00%
2-Methylnaphthalene	SVOC	Water	ug/L	3	1	0	3	100.00%
2-Methylphenol	SVOC	Water	ug/L	3	0	0	3	100.00%
2-Nitroaniline	SVOC	Water	ug/L	3	0	0	3	100.00%
3&4-Methylphenol(m&p Cresol)	SVOC	Water	ug/L	3	1	0	3	100.00%
3,3'-Dichlorobenzidine	SVOC	Water	ug/L	3	0	0	3	100.00%
4-Chloroaniline	SVOC	Water	ug/L	3	0	0	3	100.00%
4-Nitroaniline	SVOC	Water	ug/L	3	0	0	3	100.00%
Acenaphthene	SVOC	Water	ug/L	3	1	0	3	100.00%
Acenaphthylene	SVOC	Water	ug/L	3	1	0	3	100.00%
Acetophenone	SVOC	Water	ug/L	3	0	0	3	100.00%
Anthracene	SVOC	Water	ug/L	3	1	0	3	100.00%
Benz[a]anthracene	SVOC	Water	ug/L	3	0	0	3	100.00%
Benzaldehyde	SVOC	Water	ug/L	3	0	0	3	100.00%
Benzo[a]pyrene	SVOC	Water	ug/L	3	1	0	3	100.00%
EVALUATION OF DATA COMPLETENESS Percentage of Non-Rejected Results vs Total Results (Only data which underwent validation are included)

Bacace/Influencementer SVOC Water ugL 3 1 0 3 100.00% BenzolgLinfloranthene SVOC Water ugL 3 0 0 3 100.00% BenzolgLinfloranthene SVOC Water ugL 3 0 0 3 100.00% Bic2-Chloreshypulpeher SVOC Water ugL 3 0 0 3 100.00% Bic2-Chloreshypulpeher SVOC Water ugL 3 0 0 3 100.00% Cynolactarm SVOC Water ugL 3 0 0 3 100.00% Chrysne SVOC Water ugL 3 0 0 3 100.00% Dien-scylphthaltae SVOC Water ugL 3 1 0 3 100.00% Dien-scylphthaltae SVOC Water ugL 3 1 0 3 100.00% Bicoanthene	Parameter	Parameter Group	Matrix	Unit	Number of Validated Results	Detections	Number of Rejected Results	Number of Non-rejected Results	Completeness
Benzelkjhursphene SVOC Water ug/L 3 0 0 3 100.00% Benzelkjhursminnen SVOC Water ug/L 3 0 0 3 100.00% bid2C-binorenthylether SVOC Water ug/L 3 0 0 3 100.00% bid2C-binorenthylether SVOC Water ug/L 3 0 0 3 100.00% bid2C-binorentylether SVOC Water ug/L 3 0 0 3 100.00% Carbacale SVOC Water ug/L 3 0 0 3 100.00% Diendrughphuthate SVOC Water ug/L 3 0 0 3 100.00% Diendrughphuthate SVOC Water ug/L 3 1 0 3 100.00% Diendrughphuthate SVOC Water ug/L 3 1 0 3 100.00% Diendrughphuthate<	Benzo[b]fluoranthene	SVOC	Water	ug/L	3	1	0	3	100.00%
Benne (Hunorambene SVOC Water ug/L 3 1 0 3 100.00% bis/2-Chloroethoxylmethane SVOC Water ug/L 3 0 0 3 100.00% bis/2-Chloroisoproylylether SVOC Water ug/L 3 0 0 3 100.00% bis/2-Chloroisoproylylether SVOC Water ug/L 3 1 0 3 100.00% Capnalcam SVOC Water ug/L 3 1 0 3 100.00% Chrysne SVOC Water ug/L 3 0 0 3 100.00% Die-bustylphthalate SVOC Water ug/L 3 1 0 3 100.00% Dio-ambustylphthalate SVOC Water ug/L 3 1 0 3 100.00% Dio-ambustylphthalate SVOC Water ug/L 3 0 0 3 100.00% Hex	Benzo[g,h,i]perylene	SVOC	Water	ug/L	3	0	0	3	100.00%
bial2-Achorenthory)methane SVOC Water ug/L 3 0 0 3 100.00% bial2-Chorisopropy)letter SVOC Water ug/L 3 0 0 3 100.00% bial2-Ehroisopropy)letter SVOC Water ug/L 3 1 0 3 100.00% Carbacule SVOC Water ug/L 3 1 0 3 100.00% DicheryLaphathactom SVOC Water ug/L 3 0 0 3 100.00% DicheryLaphathatate SVOC Water ug/L 3 0 0 3 100.00% DicharyLaphathatate SVOC Water ug/L 3 1 0 3 100.00% DicharyLaphathatate SVOC Water ug/L 3 1 0 3 100.00% Houranthone SVOC Water ug/L 3 0 0 3 100.00% Houran	Benzo[k]fluoranthene	SVOC	Water	ug/L	3	1	0	3	100.00%
bit2.Chlorodspipelseter SVOC Water ug/L 3 0 0 3 100.00% bit3.2-Chlopedspipelseter SVOC Water ug/L 3 0 0 3 100.00% bit3.2-Ehtylneylphthate SVOC Water ug/L 3 0 0 3 100.00% Carbazole SVOC Water ug/L 3 0 0 3 100.00% Chrysene SVOC Water ug/L 3 0 0 3 100.00% Dehrsphthulate SVOC Water ug/L 3 0 0 3 100.00% Dehrsphthulate SVOC Water ug/L 3 1 0 3 100.00% Horentene SVOC Water ug/L 3 1 0 3 100.00% Horentene SVOC Water ug/L 3 0 0 3 100.00% Hoachhorbutatere SVOC	bis(2-chloroethoxy)methane	SVOC	Water	ug/L	3	0	0	3	100.00%
bits2-Chloroisopropylether SVOC Water ug/L 3 0 0 3 100.00% bits2-Ethythexylphthalate SVOC Water ug/L 3 1 0 3 100.00% Carbolaxtam SVOC Water ug/L 3 1 0 3 100.00% Carboazole SVOC Water ug/L 3 0 0 3 100.00% Diehor/ahlpathate SVOC Water ug/L 3 0 0 3 100.00% Die-no-cytlphthalate SVOC Water ug/L 3 1 0 3 100.00% Flaocrande SVOC Water ug/L 3 1 0 3 100.00% Hexachlorobenzene SVOC Water ug/L 3 0 0 3 100.00% Hexachlorobenzene SVOC Water ug/L 3 0 0 3 100.00% Hexachlorobenzinene	bis(2-Chloroethyl)ether	SVOC	Water	ug/L	3	0	0	3	100.00%
bix(2-Entrythexyl)pinthalate SVOC Water ug/L 3 1 0 3 100.00% Caprolactam SVOC Water ug/L 3 10 0 3 100.00% Carbazole SVOC Water ug/L 3 1 0 3 100.00% Dhenz(a)hjanthracene SVOC Water ug/L 3 0 0 3 100.00% Di-n-ocytlphthalate SVOC Water ug/L 3 1 0 3 100.00% Di-n-ocytlphthalate SVOC Water ug/L 3 1 0 3 100.00% Hexachlorobenzene SVOC Water ug/L 3 1 0 3 100.00% Hexachlorobradiene SVOC Water ug/L 3 0 0 3 100.00% Hexachlorobradiene SVOC Water ug/L 3 0 0 3 100.00% Isopatone	bis(2-Chloroisopropyl)ether	SVOC	Water	ug/L	3	0	0	3	100.00%
Capolacam SVOC Water ug/L 3 0 0 3 100.00% Carbazale SVOC Water ug/L 3 1 0 3 100.00% Chrysene SVOC Water ug/L 3 0 0 3 100.00% Diehzphyphthalate SVOC Water ug/L 3 0 0 3 100.00% Dis-n-buryphthalate SVOC Water ug/L 3 1 0 3 100.00% Dis-n-buryphthalate SVOC Water ug/L 3 1 0 3 100.00% Fluoranet SVOC Water ug/L 3 0 0 3 100.00% Heachlorocharene SVOC Water ug/L 3 0 0 3 100.00% Heachlorocharene SVOC Water ug/L 3 0 0 3 100.00% Idedor[1,2,3-c.d]pyrene SVOC	bis(2-Ethylhexyl)phthalate	SVOC	Water	ug/L	3	1	0	3	100.00%
Carhazole SVOC Water ug/L 3 1 0 3 100.00% Chrysene SVOC Water ug/L 3 0 0 3 100.00% Diehzplah]hufthalee SVOC Water ug/L 3 0 0 3 100.00% Dis-boxythphthalate SVOC Water ug/L 3 1 0 3 100.00% Fluoranthene SVOC Water ug/L 3 1 0 3 100.00% Fluorene SVOC Water ug/L 3 1 0 3 100.00% Hexachlorobenzene SVOC Water ug/L 3 0 0 3 100.00% Hexachlorobenzene SVOC Water ug/L 3 0 0 3 100.00% Hexachlorobenzene SVOC Water ug/L 3 0 0 3 100.00% Inscachlorobenzene SVOC	Caprolactam	SVOC	Water	ug/L	3	0	0	3	100.00%
Chrysene SVOC Water ug/L 3 0 0 3 100.00% Dibenzla,hjanthracene SVOC Water ug/L 3 0 0 3 100.00% Di-n-butylphthalate SVOC Water ug/L 3 1 0 3 100.00% Di-n-ozylphthalate SVOC Water ug/L 3 1 0 3 100.00% Fluoranthene SVOC Water ug/L 3 1 0 3 100.00% Hexachlorobazene SVOC Water ug/L 3 0 0 3 100.00% Hexachlorobazene SVOC Water ug/L 3 0 0 3 100.00% Hexachlorobazene SVOC Water ug/L 3 0 0 3 100.00% Isophorone SVOC Water ug/L 3 0 0 3 100.00% Nirbotazene SVOC	Carbazole	SVOC	Water	ug/L	3	1	0	3	100.00%
Dihenzja, hjanthracene SVOC Water ug/L 3 0 0 3 100.00% Dierh-phytphthalate SVOC Water ug/L 3 0 0 3 100.00% Di-n-buytphthalate SVOC Water ug/L 3 1 0 3 100.00% Di-n-buytphthalate SVOC Water ug/L 3 1 0 3 100.00% Fluorene SVOC Water ug/L 3 1 0 3 100.00% Hexachlorobutadiene SVOC Water ug/L 3 0 0 3 100.00% Hexachlorobutadiene SVOC Water ug/L 3 0 0 3 100.00% Indenof_L_3.3-cdJpyrne SVOC Water ug/L 3 0 0 3 100.00% Ninpthalare SVOC Water ug/L 3 0 0 3 100.00% Ninpthalare	Chrysene	SVOC	Water	ug/L	3	0	0	3	100.00%
Diethylphthalate SVOC Water ug/L 3 0 0 3 100.09% Dir-nocytlphthalate SVOC Water ug/L 3 1 0 3 100.09% Dir-nocytlphthalate SVOC Water ug/L 3 1 0 3 100.09% Fluorene SVOC Water ug/L 3 1 0 3 100.09% Hexachlorobutadiene SVOC Water ug/L 3 0 0 3 100.09% Hexachlorobutadiene SVOC Water ug/L 3 0 0 3 100.09% Hexachlorobutadiene SVOC Water ug/L 3 0 0 3 100.09% Indeno[1.3.2,cl]prene SVOC Water ug/L 3 0 0 3 100.09% Nitrobenzene SVOC Water ug/L 3 0 0 3 100.09% Nitrobenzene	Dibenz[a,h]anthracene	SVOC	Water	ug/L	3	0	0	3	100.00%
Di-n-burylphthalate SVOC Water ug/L 3 1 0 3 100.00% Di-n-ocydphthalate SVOC Water ug/L 3 0 0 3 100.00% Fluoranthene SVOC Water ug/L 3 1 0 3 100.00% Heurachlorobenzene SVOC Water ug/L 3 0 0 3 100.00% Hexachlorocylopentadiene SVOC Water ug/L 3 0 0 3 100.00% Hexachlorocylopentadiene SVOC Water ug/L 3 0 0 3 100.00% Isophorone SVOC Water ug/L 3 0 0 3 100.00% Naphthalene SVOC Water ug/L 3 0 0 3 100.00% Neitoxodiphenylamine SVOC Water ug/L 3 0 0 3 100.00% Pre	Diethylphthalate	SVOC	Water	ug/L	3	0	0	3	100.00%
Di-n-ocythphalate SVOC Water ug/L 3 0 0 3 100.00% Fluorantene SVOC Water ug/L 3 1 0 3 100.00% Fluorantene SVOC Water ug/L 3 0 0 3 100.00% Hexachlorobenzene SVOC Water ug/L 3 0 0 3 100.00% Hexachlorobutadiene SVOC Water ug/L 3 0 0 3 100.00% Hexachlorobutadiene SVOC Water ug/L 3 0 0 3 100.00% Ikeaxchlorobutane SVOC Water ug/L 3 0 0 3 100.00% Isophorone SVOC Water ug/L 3 0 0 3 100.00% N:Itrobazane SVOC Water ug/L 3 0 0 3 100.00% N-Introsodiphenylamine <td>Di-n-butylphthalate</td> <td>SVOC</td> <td>Water</td> <td>ug/L</td> <td>3</td> <td>1</td> <td>0</td> <td>3</td> <td>100.00%</td>	Di-n-butylphthalate	SVOC	Water	ug/L	3	1	0	3	100.00%
Huoranthene SVOC Water ug/L 3 1 0 3 100.00% Fluorene SVOC Water ug/L 3 1 0 3 100.00% Hexachlorobenzene SVOC Water ug/L 3 0 0 3 100.00% Hexachlorobutadiene SVOC Water ug/L 3 0 0 3 100.00% Hexachlorocthane SVOC Water ug/L 3 0 0 3 100.00% Indeno[1,2,3-c.d]pyrene SVOC Water ug/L 3 0 0 3 100.00% Naphthalene SVOC Water ug/L 3 0 0 3 100.00% Nitrobenzene SVOC Water ug/L 3 0 0 3 100.00% N-Nitrosodiphenylamine SVOC Water ug/L 3 0 0 3 100.00% Phenol	Di-n-ocytlphthalate	SVOC	Water	ug/L	3	0	0	3	100.00%
Pluorene SVOC Water u_g/L 3 1 0 3 100.00% Hexachlorobenzene SVOC Water ug/L 3 0 0 3 100.00% Hexachlorocyclopentadiene SVOC Water ug/L 3 0 0 3 100.00% Hexachlorocyclopentadiene SVOC Water ug/L 3 0 0 3 100.00% Ideachlorocyclopentadiene SVOC Water ug/L 3 0 0 3 100.00% Ideachlorochloroce SVOC Water ug/L 3 0 0 3 100.00% Naphthalene SVOC Water ug/L 3 0 0 3 100.00% N-Nitrosodiphenylamine SVOC Water ug/L 3 0 0 3 100.00% N-Nitrosodiphenylamine SVOC Water ug/L 3 0 0 3 100.00% <t< td=""><td>Fluoranthene</td><td>SVOC</td><td>Water</td><td>ug/L</td><td>3</td><td>1</td><td>0</td><td>3</td><td>100.00%</td></t<>	Fluoranthene	SVOC	Water	ug/L	3	1	0	3	100.00%
Hexachlorobenzene SVOC Water ug/L 3 0 0 3 100.00% Hexachlorobutadiene SVOC Water ug/L 3 0 0 3 100.00% Hexachlorocyclopentadiene SVOC Water ug/L 3 0 0 3 100.00% Hexachlorocyclopentadiene SVOC Water ug/L 3 0 0 3 100.00% Indeno[1,2,3-c,d]pyrene SVOC Water ug/L 3 0 0 3 100.00% Naphthalene SVOC Water ug/L 3 0 0 3 100.00% N:birobenzene SVOC Water ug/L 3 0 0 3 100.00% N-Nitrosodiphenylamine SVOC Water ug/L 3 0 0 3 100.00% Phenanthrene SVOC Water ug/L 3 1 0 3 100.00% Phenanthren	Fluorene	SVOC	Water	ug/L	3	1	0	3	100.00%
Hexachlorobutadiene SVOC Water ug/L 3 0 0 3 100.00% Hexachlorocyclopentadiene SVOC Water ug/L 3 0 0 3 100.00% Hexachlorocthane SVOC Water ug/L 3 0 0 3 100.00% Isophorone SVOC Water ug/L 3 0 0 3 100.00% Naphthalene SVOC Water ug/L 3 1 0 3 100.00% N-Nitrosodiphenylamine SVOC Water ug/L 3 0 0 3 100.00% N-Nitrosodiphenylamine SVOC Water ug/L 3 0 0 3 100.00% Pentachlorophenol SVOC Water ug/L 3 0 0 3 100.00% Phenol SVOC Water ug/L 3 1 0 3 100.00% Gasoline Ra	Hexachlorobenzene	SVOC	Water	ug/L	3	0	0	3	100.00%
Hexachlorocyclopentadiene SVOC Water ug/L 3 0 0 3 100.00% Hexachloroethane SVOC Water ug/L 3 0 0 3 100.00% Indeno[1,2,3-c,d]pyrene SVOC Water ug/L 3 0 0 3 100.00% Isophorone SVOC Water ug/L 3 0 0 3 100.00% Naphthalene SVOC Water ug/L 3 0 0 3 100.00% N:troso-di-n-propylamine SVOC Water ug/L 3 0 0 3 100.00% N-Nitroso-di-n-propylamine SVOC Water ug/L 3 0 0 3 100.00% Phenathlorophenol SVOC Water ug/L 3 0 0 3 100.00% Phenathlere SVOC Water ug/L 3 1 0 3 100.00%	Hexachlorobutadiene	SVOC	Water	ug/L	3	0	0	3	100.00%
Hexachlorothane SVOC Water ug/L 3 0 0 3 100.00% Indeno[1,2,3-c,d]pyrene SVOC Water ug/L 3 0 0 3 100.00% Isophorone SVOC Water ug/L 3 0 0 3 100.00% Naphthalene SVOC Water ug/L 3 0 0 3 100.00% Nitrobenzene SVOC Water ug/L 3 0 0 3 100.00% N-Nitroso-din-n-propylamine SVOC Water ug/L 3 0 0 3 100.00% N-Nitrosodiphenylamine SVOC Water ug/L 3 0 0 3 100.00% Phenol SVOC Water ug/L 3 0 0 3 100.00% Gasoline Range Organics TPH Water ug/L 3 1 0 3 100.00% 11.1.1-Trichloroethane VOC	Hexachlorocyclopentadiene	SVOC	Water	ug/L	3	0	0	3	100.00%
Indeno[1,2,3-c,d]pyrene SVOC Water ug/L 3 0 0 3 100.00% Isophorone SVOC Water ug/L 3 0 0 3 100.00% Naphthalene SVOC Water ug/L 3 1 0 3 100.00% Nitrobenzene SVOC Water ug/L 3 0 0 3 100.00% N-Nitrosodin-propylamine SVOC Water ug/L 3 0 0 3 100.00% N-Nitrosodiphenylamine SVOC Water ug/L 3 0 0 3 100.00% Pentachlorophenol SVOC Water ug/L 3 0 0 3 100.00% Phenol SVOC Water ug/L 3 1 0 3 100.00% Disesl Range Organics TPH Water ug/L 3 1 0 3 100.00% 1,1.2-Trichloroethane	Hexachloroethane	SVOC	Water	ug/L	3	0	0	3	100.00%
Isophorone SVOC Water ug/L 3 0 0 3 100.00% Naphthalene SVOC Water ug/L 3 1 0 3 100.00% Nitrobenzene SVOC Water ug/L 3 0 0 3 100.00% N-Nitroso-di-n-propylamine SVOC Water ug/L 3 0 0 3 100.00% N-Nitroso-di-n-propylamine SVOC Water ug/L 3 0 0 3 100.00% Pentachlorophenol SVOC Water ug/L 3 0 0 3 100.00% Phenol SVOC Water ug/L 3 1 0 3 100.00% Disel Range Organics TPH Water ug/L 3 1 0 3 100.00% Oil & Grease TPH Water ug/L 3 0 0 3 100.00% 1,1.2-Trichloroethane V	Indeno[1,2,3-c,d]pyrene	SVOC	Water	ug/L	3	0	0	3	100.00%
Instrume	Isophorone	SVOC	Water	119/L	3	0	0	3	100.00%
Nitrobenzene SVOC Water ug/L 3 0 0 3 100.00% N-Nitroso-di-n-propylamine SVOC Water ug/L 3 0 0 3 100.00% N-Nitroso-di-n-propylamine SVOC Water ug/L 3 0 0 3 100.00% Pentachlorophenol SVOC Water ug/L 3 0 0 3 100.00% Pentachlorophenol SVOC Water ug/L 3 0 0 3 100.00% Phenol SVOC Water ug/L 3 1 0 3 100.00% Pyrene SVOC Water ug/L 3 1 0 3 100.00% Gasoline Range Organics TPH Water ug/L 3 0 0 3 100.00% 1,1,2-Trichloroethane VOC Water ug/L 3 0 0 3 100.00% 1,1,2-Trichloroethane	Naphthalene	SVOC	Water	ug/L	3	1	0	3	100.00%
Investigation Direction Direction <thdirection< th=""></thdirection<>	Nitrobenzene	SVOC	Water	ug/L	3	0	0	3	100.00%
N-Nitros de l'englimie S'OC Vater ug/L 3 0 0 3 100.00% Pentachlorophenol SVOC Water ug/L 3 0 0 3 100.00% Pentachlorophenol SVOC Water ug/L 3 0 0 3 100.00% Phenol SVOC Water ug/L 3 1 0 3 100.00% Pyrene SVOC Water ug/L 3 1 0 3 100.00% Gasoline Range Organics TPH Water ug/L 3 2 0 3 100.00% Gasoline Range Organics TPH Water ug/L 3 0 0 3 100.00% 1,1,1-Trichloroethane VOC Water ug/L 3 0 0 3 100.00% 1,1,2-Trichloroethane VOC Water ug/L 3 0 0 3 100.00% 1,1,2-T	N-Nitroso-di-n-propylamine	SVOC	Water	ug/L	3	0	0	3	100.00%
Pentachlorophenol SVOC Water ug/L 3 0 0 3 100.00% Phenanthrene SVOC Water ug/L 3 0 0 3 100.00% Phenanthrene SVOC Water ug/L 3 1 0 3 100.00% Phenol SVOC Water ug/L 3 1 0 3 100.00% Pyrene SVOC Water ug/L 3 1 0 3 100.00% Gasoline Range Organics TPH Water ug/L 3 0 0 3 100.00% 1,1,1-Trichloroethane VOC Water ug/L 3 0 0 3 100.00% 1,1,2-Trichloroethane VOC Water ug/L 3 0 0 3 100.00% 1,1,2-Trichloroethane VOC Water ug/L 3 0 0 3 100.00% 1,1,2-Trichloroethane VOC<	N-Nitrosodiphenylamine	SVOC	Water	ug/L	3	0	0	3	100.00%
Initial optimization Description Description <thdescription< t<="" td=""><td>Pentachlorophenol</td><td>SVOC</td><td>Water</td><td>ug/L</td><td>3</td><td>0</td><td>0</td><td>3</td><td>100.00%</td></thdescription<>	Pentachlorophenol	SVOC	Water	ug/L	3	0	0	3	100.00%
Definition Definition <thdefinition< th=""> Definition Definiti</thdefinition<>	Phenanthrene	SVOC	Water	ug/L	3	0	0	3	100.00%
Pyrene SVOC Water ug/L 3 1 0 3 100.00% Diesel Range Organics TPH Water ug/L 3 2 0 3 100.00% Gasoline Range Organics TPH Water ug/L 3 2 0 3 100.00% Gasoline Range Organics TPH Water ug/L 3 0 0 3 100.00% Oil & Grease TPH Water ug/L 3 1 0 3 100.00% 1,1,1-Trichloroethane VOC Water ug/L 3 0 0 3 100.00% 1,1,2-Tirchloroethane VOC Water ug/L 3 0 0 3 100.00% 1,1,2-Trichloroethane VOC Water ug/L 3 0 0 3 100.00% 1,1-Dichloroethane VOC Water ug/L 3 0 0 3 100.00% 1,2,3-Trichlorobenze	Phenol	SVOC	Water	ug/L	3	1	0	3	100.00%
Dissel Range Organics TPH Water ug/L 3 2 0 3 100.00% Gasoline Range Organics TPH Water ug/L 3 2 0 3 100.00% Gasoline Range Organics TPH Water ug/L 3 0 0 3 100.00% Oil & Grease TPH Water ug/L 3 1 0 3 100.00% 1,1,1-Trichloroethane VOC Water ug/L 3 0 0 3 100.00% 1,1,2-Tetrachloroethane VOC Water ug/L 3 0 0 3 100.00% 1,1,2-Trichloro-1,2,2-Trifluoroethane VOC Water ug/L 3 0 0 3 100.00% 1,1-Dichloroethane VOC Water ug/L 3 0 0 3 100.00% 1,1-Dichloroethane VOC Water ug/L 3 0 0 3 100.00% 1,2-Jartichlorobenzene VOC Water ug/L 3 0 0	Pyrene	SVOC	Water	110/L	3	1	0	3	100.00%
Dick Transport TTT Water ug/L 3 0 0 3 100.00% Gasoline Range Organics TPH Water ug/L 3 0 0 3 100.00% Oil & Grease TPH Water ug/L 3 1 0 3 100.00% 1,1,1-Trichloroethane VOC Water ug/L 3 0 0 3 100.00% 1,1,2-Z-Tetrachloroethane VOC Water ug/L 3 0 0 3 100.00% 1,1,2-Trichloro-1,2,2-Trifluoroethane VOC Water ug/L 3 0 0 3 100.00% 1,1,2-Trichloroethane VOC Water ug/L 3 0 0 3 100.00% 1,1-Dichloroethane VOC Water ug/L 3 0 0 3 100.00% 1,2-3-Trichlorobenzene VOC Water ug/L 3 0 0 3 100.00% 1,2,4-Trichlorobenzene VOC Water ug/L 3 0 0 <td< td=""><td>Diesel Range Organics</td><td>ТРН</td><td>Water</td><td>110/L</td><td>3</td><td>2</td><td>0</td><td>3</td><td>100.00%</td></td<>	Diesel Range Organics	ТРН	Water	110/L	3	2	0	3	100.00%
Odl & Grease TPH Water ug/L 3 1 0 3 100.00% 1,1,1-Trichloroethane VOC Water ug/L 3 0 0 3 100.00% 1,1,2-Trichloroethane VOC Water ug/L 3 0 0 3 100.00% 1,1,2-Trichloroethane VOC Water ug/L 3 0 0 3 100.00% 1,1,2-Trichloroethane VOC Water ug/L 3 0 0 3 100.00% 1,1,2-Trichloroethane VOC Water ug/L 3 0 0 3 100.00% 1,1-Dichloroethane VOC Water ug/L 3 0 0 3 100.00% 1,1-Dichloroethane VOC Water ug/L 3 0 0 3 100.00% 1,2,3-Trichlorobenzene VOC Water ug/L 3 0 0 3 100.00% 1,2-Jaibrono-3-chloropropane VOC Water ug/L 3 0 0 3	Gasoline Range Organics	ТРН	Water	110/L	3	0	0	3	100.00%
On a contact If	Oil & Grease	ТРН	Water	110/L	3	1	0	3	100.00%
1,1,2,2-Tetrachloroethane VOC Water ug/L 3 0 0 3 100.00% 1,1,2,2-Tetrachloroethane VOC Water ug/L 3 0 0 3 100.00% 1,1,2-Trichloro-1,2,2-Trifluoroethane VOC Water ug/L 3 0 0 3 100.00% 1,1,2-Trichloroethane VOC Water ug/L 3 0 0 3 100.00% 1,1-Dichloroethane VOC Water ug/L 3 0 0 3 100.00% 1,1-Dichloroethane VOC Water ug/L 3 0 0 3 100.00% 1,1-Dichloroethene VOC Water ug/L 3 0 0 3 100.00% 1,2,3-Trichlorobenzene VOC Water ug/L 3 0 0 3 100.00% 1,2,4-Trichlorobenzene VOC Water ug/L 3 0 0 3 100.00% 1,2-Dibromo-3-chloropropane VOC Water ug/L 3 0 <t< td=""><td>1 1 1-Trichloroethane</td><td>VOC</td><td>Water</td><td>110/L</td><td>3</td><td>0</td><td>0</td><td>3</td><td>100.00%</td></t<>	1 1 1-Trichloroethane	VOC	Water	110/L	3	0	0	3	100.00%
1,1,2-Trichloro-1,2,2-Trifluoroethane VOC Water ug/L 3 0 0 3 100.00% 1,1,2-Trichloroethane VOC Water ug/L 3 0 0 3 100.00% 1,1,2-Trichloroethane VOC Water ug/L 3 0 0 3 100.00% 1,1-Dichloroethane VOC Water ug/L 3 0 0 3 100.00% 1,1-Dichloroethane VOC Water ug/L 3 0 0 3 100.00% 1,1-Dichloroethene VOC Water ug/L 3 0 0 3 100.00% 1,2,3-Trichlorobenzene VOC Water ug/L 3 0 0 3 100.00% 1,2,4-Trichlorobenzene VOC Water ug/L 3 0 0 3 100.00% 1,2-Dibromo-3-chloropropane VOC Water ug/L 3 0 0 3 100.00% 1,2-Dichlorobenzene VOC Water ug/L 3 0 0	1.1.2.2-Tetrachloroethane	VOC	Water	ug/L	3	0	0	3	100.00%
1,1,2-Trichloroethane VOC Water ug/L 3 0 0 3 100.00% 1,1,2-Trichloroethane VOC Water ug/L 3 0 0 3 100.00% 1,1-Dichloroethane VOC Water ug/L 3 0 0 3 100.00% 1,1-Dichloroethane VOC Water ug/L 3 0 0 3 100.00% 1,2,3-Trichlorobenzene VOC Water ug/L 3 0 0 3 100.00% 1,2,4-Trichlorobenzene VOC Water ug/L 3 0 0 3 100.00% 1,2-Dibromo-3-chloropropane VOC Water ug/L 3 0 0 3 100.00% 1,2-Dibromoethane VOC Water ug/L 3 0 0 3 100.00% 1,2-Dichlorobenzene VOC Water ug/L 3 0 0 3 100.00% 1,2-Dichlorobenzene VOC Water ug/L 3 0 0 3	1,1,2-Trichloro-1,2,2-Trifluoroethane	VOC	Water	ug/L	3	0	0	3	100.00%
1,1-Dichloroethane VOC Water ug/L 3 0 0 3 100.00% 1,1-Dichloroethane VOC Water ug/L 3 0 0 3 100.00% 1,1-Dichloroethane VOC Water ug/L 3 0 0 3 100.00% 1,2,3-Trichlorobenzene VOC Water ug/L 3 0 0 3 100.00% 1,2,4-Trichlorobenzene VOC Water ug/L 3 0 0 3 100.00% 1,2-Dibromo-3-chloropropane VOC Water ug/L 3 0 0 3 100.00% 1,2-Dibromoethane VOC Water ug/L 3 0 0 3 100.00% 1,2-Dichlorobenzene VOC Water ug/L 3 0 0 3 100.00% 1,2-Dichlorobenzene VOC Water ug/L 3 0 0 3 100.00% 1,2-Dichloroethane VOC Water ug/L 3 0 0 3 <td< td=""><td>1.1.2-Trichloroethane</td><td>VOC</td><td>Water</td><td>ug/L</td><td>3</td><td>0</td><td>0</td><td>3</td><td>100.00%</td></td<>	1.1.2-Trichloroethane	VOC	Water	ug/L	3	0	0	3	100.00%
1,1-Dichloroethane VOC Water ug/L 3 0 0 3 100.00% 1,2,3-Trichlorobenzene VOC Water ug/L 3 0 0 3 100.00% 1,2,4-Trichlorobenzene VOC Water ug/L 3 0 0 3 100.00% 1,2-4-Trichlorobenzene VOC Water ug/L 3 0 0 3 100.00% 1,2-Dibromo-3-chloropropane VOC Water ug/L 3 0 0 3 100.00% 1,2-Dibromoethane VOC Water ug/L 3 0 0 3 100.00% 1,2-Dichlorobenzene VOC Water ug/L 3 0 0 3 100.00% 1,2-Dichlorobenzene VOC Water ug/L 3 0 0 3 100.00% 1,2-Dichloroethane VOC Water ug/L 3 0 0 3 100.00% 1,2-Dichloroethene (Total) VOC Water ug/L 3 0 0 3 <td>1.1-Dichloroethane</td> <td>VOC</td> <td>Water</td> <td>ug/L</td> <td>3</td> <td>0</td> <td>0</td> <td>3</td> <td>100.00%</td>	1.1-Dichloroethane	VOC	Water	ug/L	3	0	0	3	100.00%
1,2,3-Trichlorobenzene VOC Water ug/L 3 0 0 3 100.00% 1,2,4-Trichlorobenzene VOC Water ug/L 3 0 0 3 100.00% 1,2,4-Trichlorobenzene VOC Water ug/L 3 0 0 3 100.00% 1,2-Dibromo-3-chloropropane VOC Water ug/L 3 0 0 3 100.00% 1,2-Dibromo-3-chloropropane VOC Water ug/L 3 0 0 3 100.00% 1,2-Dibromoethane VOC Water ug/L 3 0 0 3 100.00% 1,2-Dichlorobenzene VOC Water ug/L 3 0 0 3 100.00% 1,2-Dichloroethane VOC Water ug/L 3 0 0 3 100.00% 1,2-Dichloroethane VOC Water ug/L 3 0 0 3 100.00% 1,2-Dichloroptopane VOC Water ug/L 3 0 0 3 </td <td>1.1-Dichloroethene</td> <td>VOC</td> <td>Water</td> <td>ug/L</td> <td>3</td> <td>0</td> <td>0</td> <td>3</td> <td>100.00%</td>	1.1-Dichloroethene	VOC	Water	ug/L	3	0	0	3	100.00%
1,2,4-Trichlorobenzene VOC Water ug/L 3 0 0 3 100.00% 1,2-Dibromo-3-chloropropane VOC Water ug/L 3 0 0 3 100.00% 1,2-Dibromo-3-chloropropane VOC Water ug/L 3 0 0 3 100.00% 1,2-Dibromoethane VOC Water ug/L 3 0 0 3 100.00% 1,2-Dichlorobenzene VOC Water ug/L 3 0 0 3 100.00% 1,2-Dichlorobenzene VOC Water ug/L 3 0 0 3 100.00% 1,2-Dichloroethane VOC Water ug/L 3 0 0 3 100.00% 1,2-Dichloroethane VOC Water ug/L 3 0 0 3 100.00% 1,2-Dichloroptopane VOC Water ug/L 3 0 0 3 100.00%	1 2 3-Trichlorobenzene	VOC	Water	110/L	3	0	0	3	100.00%
1,2-Dibromo-3-chloropropane VOC Water ug/L 3 0 0 3 100.00% 1,2-Dibromo-3-chloropropane VOC Water ug/L 3 0 0 3 100.00% 1,2-Dibromoethane VOC Water ug/L 3 0 0 3 100.00% 1,2-Dichlorobenzene VOC Water ug/L 3 0 0 3 100.00% 1,2-Dichloroethane VOC Water ug/L 3 0 0 3 100.00% 1,2-Dichloroethane VOC Water ug/L 3 0 0 3 100.00% 1,2-Dichloroethane VOC Water ug/L 3 0 0 3 100.00% 1,2-Dichloroethane VOC Water ug/L 3 0 0 3 100.00% 1,2-Dichloropropane VOC Water ug/L 3 0 0 3 100.00%	1.2.4-Trichlorobenzene	VOC	Water	uø/L	3	0	0	3	100.00%
1,2-Dibromoethane VOC Water ug/L 3 0 0 3 100.00% 1,2-Dichlorobenzene VOC Water ug/L 3 0 0 3 100.00% 1,2-Dichlorobenzene VOC Water ug/L 3 0 0 3 100.00% 1,2-Dichlorobenzene VOC Water ug/L 3 0 0 3 100.00% 1,2-Dichlorobenene (Total) VOC Water ug/L 3 0 0 3 100.00% 1,2-Dichloropropane VOC Water ug/L 3 0 0 3 100.00%	1 2-Dibromo-3-chloropropane	VOC	Water	110/L	3	0	0	3	100.00%
1,2-Dichlorobenzene VOC Water ug/L 3 0 0 3 100.00% 1,2-Dichlorobenzene VOC Water ug/L 3 0 0 3 100.00% 1,2-Dichlorobenzene VOC Water ug/L 3 0 0 3 100.00% 1,2-Dichlorobenzene VOC Water ug/L 3 0 0 3 100.00% 1,2-Dichlorobenzene VOC Water ug/L 3 0 0 3 100.00% 1,2-Dichlorobenzene VOC Water ug/L 3 0 0 3 100.00%	1.2-Dibromoethane	VOC	Water	ця/L	3	0	0	3	100.00%
1,2-Dichloroethane VOC Water ug/L 3 0 0 3 100.00% 1,2-Dichloroethane VOC Water ug/L 3 0 0 3 100.00% 1,2-Dichloroethane VOC Water ug/L 3 0 0 3 100.00% 1,2-Dichloropropane VOC Water ug/L 3 0 0 3 100.00%	1.2-Dichlorobenzene	VOC	Water	110/L	3	0	0	3	100.00%
1,2 Dichloroctalle VOC Water ug/L 3003100.00%1,2-DichloropropaneVOCWater ug/L 3003100.00%	1 2-Dichloroethane	VOC	Water	110/L	3	0	0	3	100.00%
1.2-Dichloropropane VOC Water uo/L 3 0 0 3 100.00%	1 2-Dichloroethene (Total)	VOC	Water	110/I	3	0	0	3	100.00%
	1.2-Dichloropropane	VOC	Water	uø/L	3	0	0	3	100.00%

EVALUATION OF DATA COMPLETENESS Percentage of Non-Rejected Results vs Total Results (Only data which underwent validation are included)

Parameter	Parameter Group	Matrix	Unit	Number of Validated Results	Detections	Number of Rejected Results	Number of Non-rejected Results	Completeness
1,3-Dichlorobenzene	VOC	Water	ug/L	3	0	0	3	100.00%
1,4-Dichlorobenzene	VOC	Water	ug/L	3	0	0	3	100.00%
2-Butanone (MEK)	VOC	Water	ug/L	3	1	0	3	100.00%
2-Hexanone	VOC	Water	ug/L	3	1	0	3	100.00%
4-Methyl-2-pentanone (MIBK)	VOC	Water	ug/L	3	1	0	3	100.00%
Acetone	VOC	Water	ug/L	3	1	0	3	100.00%
Benzene	VOC	Water	ug/L	3	0	0	3	100.00%
Bromodichloromethane	VOC	Water	ug/L	3	0	0	3	100.00%
Bromoform	VOC	Water	ug/L	3	0	0	3	100.00%
Bromomethane	VOC	Water	ug/L	3	0	0	3	100.00%
Carbon disulfide	VOC	Water	ug/L	3	0	0	3	100.00%
Carbon tetrachloride	VOC	Water	ug/L	3	0	0	3	100.00%
Chlorobenzene	VOC	Water	ug/L	3	0	0	3	100.00%
Chloroethane	VOC	Water	ug/L	3	0	0	3	100.00%
Chloroform	VOC	Water	ug/L	3	0	0	3	100.00%
Chloromethane	VOC	Water	ug/L	3	0	0	3	100.00%
cis-1,2-Dichloroethene	VOC	Water	ug/L	3	0	0	3	100.00%
cis-1,3-Dichloropropene	VOC	Water	ug/L	3	0	0	3	100.00%
Cyclohexane	VOC	Water	ug/L	3	0	0	3	100.00%
Dibromochloromethane	VOC	Water	ug/L	3	0	0	3	100.00%
Dichlorodifluoromethane	VOC	Water	ug/L	3	0	0	3	100.00%
Ethylbenzene	VOC	Water	ug/L	3	0	0	3	100.00%
Isopropylbenzene	VOC	Water	ug/L	3	0	0	3	100.00%
Methyl Acetate	VOC	Water	ug/L	3	1	0	3	100.00%
Methyl tert-butyl ether (MTBE)	VOC	Water	ug/L	3	0	0	3	100.00%
Methylene Chloride	VOC	Water	ug/L	3	0	0	3	100.00%
Styrene	VOC	Water	ug/L	3	0	0	3	100.00%
Tetrachloroethene	VOC	Water	ug/L	3	0	0	3	100.00%
Toluene	VOC	Water	ug/L	3	1	0	3	100.00%
trans-1,2-Dichloroethene	VOC	Water	ug/L	3	0	0	3	100.00%
trans-1,3-Dichloropropene	VOC	Water	ug/L	3	0	0	3	100.00%
Trichloroethene	VOC	Water	ug/L	3	0	0	3	100.00%
Trichlorofluoromethane	VOC	Water	ug/L	3	0	0	3	100.00%
Vinyl chloride	VOC	Water	ug/L	3	0	0	3	100.00%
Xylenes	VOC	Water	ug/L	3	0	0	3	100.00%
1,4-Dioxane	VOC/SVOC	Water	ug/L	3	0	0	3	100.00%

Data validation has been completed for a representative 30% of all samples

APPENDIX I

Well/Piezometer ID: B24-001-PZ

General Project Information:

Client: VRC

Site Location: Sparrows Point, MD

Parcel ID: B24

Abandonment Date: 7/1/20

Abandonment Contractor: GSI

Abandonment Method (circle appropriate):

1. PVC \rightarrow Qulled Split / Perforated / Left-In-Place / Overdrilled, 4.25" hollow stem

2. Abandoned – Grout/ Bentonite Chips

Field Equipment: Geoprobe/Grout machine (95% Portland/5% Bentonite)/oil-water interface probe

ARM Representative(s): J. Barna

Well Diameter: <u>1"</u>

Depth to Bottom (TOC)	Final Gauging Prior to Abandonment:
Reported (historical/log): 16'	Depth to Water (TOC): 12.02'
Measured: 19.15'	Depth to NAPL (TOC): No LNAPL/DNAPL

Please note if this abandonment is for a known NAPL delineation/monitoring area or individual NAPL screening piezometer and identify the name of the delineation area (e.g., B6-066 NAPL Area or B5-144 Screening Piezometer): **B24 Phase II**

Please Note: If NAPL is identified in a piezometer, the Project Manager should be notified and the piezometer may not be abandoned unless the presence of NAPL is already known and a decision has been made to abandon the NAPL monitoring network.

Additional Comments (if any):

ARM Group LLC

Well/Piezometer ID: B24-003-PZ

General Project Information:

Client: VRC

Site Location: Sparrows Point, MD

Parcel ID: B24

Abandonment Date: 7/1/20

Abandonment Contractor: GSI

Abandonment Method (circle appropriate):

1. PVC \rightarrow Qulled Split / Perforated / Left-In-Place / Overdrilled, 4.25" hollow stem

2. Abandoned – Grout/ Bentonite Chips

Field Equipment: Geoprobe/Grout machine (95% Portland/5% Bentonite)/oil-water interface probe

ARM Representative(s): J. Barna

Well Diameter: <u>1"</u>

Depth to Bottom (TOC)	Final Gauging Prior to Abandonment:
Reported (historical/log): 15'	Depth to Water (TOC): 12.17'
Measured: 18.05'	Depth to NAPL (TOC): No LNAPL/DNAPL

Please note if this abandonment is for a known NAPL delineation/monitoring area or individual NAPL screening piezometer and identify the name of the delineation area (e.g., B6-066 NAPL Area or B5-144 Screening Piezometer): **B24-003**

Please Note: If NAPL is identified in a piezometer, the Project Manager should be notified and the piezometer may not be abandoned unless the presence of NAPL is already known and a decision has been made to abandon the NAPL monitoring network.

Additional Comments (if any):

ARM Group LLC

Well/Piezometer ID: B24-027-PZ

General Project Information:

Client: VRC

Site Location: Sparrows Point, MD

Parcel ID: B24

Abandonment Date: 7/1/20

Abandonment Contractor: GSI

Abandonment Method (circle appropriate):

1. PVC \rightarrow Qulled Split / Perforated / Left-In-Place / Overdrilled, 4.25" hollow stem

2. Abandoned – Grout/ Bentonite Chips

Field Equipment: Geoprobe/Grout machine (95% Portland/5% Bentonite)/oil-water interface probe

ARM Representative(s): J. Barna

Well Diameter: <u>1"</u>

Depth to Bottom (TOC)	Final Gauging Prior to Abandonment:
Reported (historical/log): 16'	Depth to Water (TOC): 10.83'
Measured: 18.51'	Depth to NAPL (TOC): No LNAPL/DNAPL

Please note if this abandonment is for a known NAPL delineation/monitoring area or individual NAPL screening piezometer and identify the name of the delineation area (e.g., B6-066 NAPL Area or B5-144 Screening Piezometer): **B24 Phase II**

Please Note: If NAPL is identified in a piezometer, the Project Manager should be notified and the piezometer may not be abandoned unless the presence of NAPL is already known and a decision has been made to abandon the NAPL monitoring network.

Additional Comments (if any):

ARM Group LLC

Well/Piezometer ID: B24-034-PZ

General Project Information:

Client: VRC

Site Location: Sparrows Point, MD

Parcel ID: B24

Abandonment Date: 7/1/20

Abandonment Contractor: GSI

Abandonment Method (circle appropriate):

1. PVC \rightarrow Qulled Split / Perforated / Left-In-Place / Overdrilled, 4.25" hollow stem

2. Abandoned – Grout/ Bentonite Chips

Field Equipment: Geoprobe/Grout machine (95% Portland/5% Bentonite)/oil-water interface probe

ARM Representative(s): J. Barna

Well Diameter: <u>1"</u>

Depth to Bottom (TOC)	Final Gauging Prior to Abandonment:
Reported (historical/log): 15'	Depth to Water (TOC): 10.72'
Measured: 17.36'	Depth to NAPL (TOC): No LNAPL/DNAPL

Please note if this abandonment is for a known NAPL delineation/monitoring area or individual NAPL screening piezometer and identify the name of the delineation area (e.g., B6-066 NAPL Area or B5-144 Screening Piezometer): **B24 Phase II**

Please Note: If NAPL is identified in a piezometer, the Project Manager should be notified and the piezometer may not be abandoned unless the presence of NAPL is already known and a decision has been made to abandon the NAPL monitoring network.

Additional Comments (if any):

ARM Group LLC

Well/Piezometer ID: B24-035-PZ

General Project Information:

Client: VRC

Site Location: Sparrows Point, MD

Parcel ID: B24

Abandonment Date: 7/1/20

Abandonment Contractor: GSI

Abandonment Method (circle appropriate):

1. PVC \rightarrow Qulled Split / Perforated / Left-In-Place / Overdrilled, 4.25" hollow stem

2. Abandoned – Grout/ Bentonite Chips

Field Equipment: Geoprobe/Grout machine (95% Portland/5% Bentonite)/oil-water interface probe

ARM Representative(s): J. Barna

Well Diameter: <u>1"</u>

Depth to Bottom (TOC)	Final Gauging Prior to Abandonment:
Reported (historical/log): 17'	Depth to Water (TOC): 11.91'
Measured: 19.82'	Depth to NAPL (TOC): No LNAPL/DNAPL

Please note if this abandonment is for a known NAPL delineation/monitoring area or individual NAPL screening piezometer and identify the name of the delineation area (e.g., B6-066 NAPL Area or B5-144 Screening Piezometer): **B24 Phase II**

Please Note: If NAPL is identified in a piezometer, the Project Manager should be notified and the piezometer may not be abandoned unless the presence of NAPL is already known and a decision has been made to abandon the NAPL monitoring network.

Additional Comments (if any):

ARM Group LLC

Well/Piezometer ID: B24-036-PZ

General Project Information:

Client: VRC

Site Location: Sparrows Point, MD

Parcel ID: B24

Abandonment Date: 7/1/20

Abandonment Contractor: GSI

Abandonment Method (circle appropriate):

1. PVC \rightarrow Qulled Split / Perforated / Left-In-Place / Overdrilled, 4.25" hollow stem

2. Abandoned \rightarrow Grout / Rentonite Chips

Field Equipment: Geoprobe/Grout machine (95% Portland/5% Bentonite)/oil-water interface probe

ARM Representative(s): J. Barna

Well Diameter: <u>1"</u>

Depth to Bottom (TOC)	Final Gauging Prior to Abandonment:
Reported (historical/log): 20'	Depth to Water (TOC): 13.64'
Measured: 22.50'	Depth to NAPL (TOC): No LNAPL/DNAPL

Please note if this abandonment is for a known NAPL delineation/monitoring area or individual NAPL screening piezometer and identify the name of the delineation area (e.g., B6-066 NAPL Area or B5-144 Screening Piezometer): **B24 Phase II**

Please Note: If NAPL is identified in a piezometer, the Project Manager should be notified and the piezometer may not be abandoned unless the presence of NAPL is already known and a decision has been made to abandon the NAPL monitoring network.

Additional Comments (if any):

ARM Group LLC