RESPONSE AND DEVELOPMENT COMPLETION REPORT

AREA A: PARCEL A4 TRADEPOINT ATLANTIC SPARROWS POINT, MARYLAND

Prepared For:

TRADEPOINT ATLANTIC 1600 Sparrows Point Boulevard Sparrows Point, Maryland 21219

Prepared By:

ARM GROUP LLC

9175 Guilford Road Suite 310 Columbia, Maryland 20146

ARM Project No. 20010104

Respectfully Submitted, ARM Group LLC

Melisser R. Hritz

Melissa Replogle Hritz, E.I.T. Staff Engineer

New Pets

T. Neil Peters, P.E. Senior Vice President

Revision 1 – September 13, 2021

TABLE OF CONTENTS

1.0	Introduction 1	l
1.1	Report Purpose	l
1.2	Project Background 2	2
1	.2.1 Site Description and History	2
1	.2.2 Historical Environmental Activities	2
1	.2.3 Phase II Investigation	3
1.3	Site Development and Response Actions	3
2.0	Response Activities	1
2.1	Supplemental DRO Delineation	1
2.2	Supplemental Cadmium Delineation and Excavation	1
2.3	Well Abandonment	5
•		_
3.0	Site Development Activities)
3.0 3.1	Site Development Activities	5
3.0 3.1 3.2	Site Development Activities 6 Pre-Construction Meeting 6 Grading and Site Preparation 6	5
3.0 3.1 3.2 3.3	Site Development Activities	555
3.0 3.1 3.2 3.3 3.4	Site Development Activities	5 5 5 5
3.0 3.1 3.2 3.3 3.4 3.5	Site Development Activities	5 5 5 7
3.0 3.1 3.2 3.3 3.4 3.5 3.6	Site Development Activities	55577
3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7	Site Development Activities 6 Pre-Construction Meeting 6 Grading and Site Preparation 6 Capping 6 Soil Management 6 Water Management 7 Dust Control 7 Health and Safety 8	555773
3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8	Site Development Activities 6 Pre-Construction Meeting 6 Grading and Site Preparation 6 Capping 6 Soil Management 6 Water Management 7 Dust Control 7 Health and Safety 8 Institutional Controls (Future Land Use Controls) 8	5557788
3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9	Site Development Activities 6 Pre-Construction Meeting 6 Grading and Site Preparation 6 Capping 6 Soil Management 6 Water Management 7 Dust Control 7 Health and Safety 8 Institutional Controls (Future Land Use Controls) 8 Post Remediation Requirements 9	55577889

TABLE OF CONTENTS (CONT.)

FIGURES

Figure 1	Area A and Area B Parcels	.Following Text
Figure 2	Building and Pavement Layout	.Following Text
Figure 3	Cadmium Delineation Analytical Results	.Following Text
Figure 4	Development Layout – Access Road	.Following Text

APPENDICES

Appendix A	References List	Following Text
Appendix B	Email Communications	.Following Text
Appendix C	Request Letter from Tradepoint Atlantic	Following Text
Appendix D	Response Action Completion Report: A4-013 Cadmium	
	Response Area	.Following Text
Appendix E	Well Abandonment Records	.Following Text
Appendix F	Pavement/Cap Summary Letter	.Following Text
Appendix G	Development Plan Drawing	.Following Text
Appendix H	Development Photograph Log	.Following Text
Appendix I	Bethlehem Boulevard Access Road Development Plan Drawings	Following Text
Appendix J	Stockpile Soil Laboratory Reports	.Following Text
Appendix K	MDE Fill Approval Documentation	Following Text

ELECTRONIC ATTACHMENTS

GTA Field Technician Daily Field Reports......Following Text

1.0 INTRODUCTION

ARM Group LLC (ARM), on behalf of Tradepoint Atlantic, has prepared this Response and Development Completion Report for a portion of the Tradepoint Atlantic property that has been designated as Area A: Parcel A4, (the Site). All documents related to the investigation and development of the parcel are listed in the Reference List in **Appendix A**. Copies of relevant email communication are provided in **Appendix B**.

Tradepoint Atlantic submitted a letter (**Appendix C**) requesting an expedited remedial plan review to achieve construction deadlines for the proposed development on this Site. The Cold Mill Building Redevelopment Work Plan (Revision 1) was submitted to the Maryland Department of the Environment (MDE) and the United States Environmental Protection Agency (USEPA) on November 29, 2016. Approval to proceed with development work was received on December 2, 2016.

Parcel A4 comprises approximately 61.4 acres of the approximately 3,100-acre former plant property located as shown on **Figure 1**. Parcel A4 includes an 800,000 square foot building (18.1 ac) that was the former New Cold Mill Complex (NCMC) and 10 acres of existing paved laydown areas. The NCMC was previously investigated by a building occupancy assessment (BOA) and will be retained during development. The results of the BOA were presented to the agencies in the Building Occupancy Assessment for the New Cold Mill Complex (dated April 13, 2015).

This report documents completion of the development performed on Parcel A4 in accordance with the Cold Mill Building Redevelopment Work Plan). Details regarding environmental conditions encountered at the Site are presented in the Parcel A4 Phase II Investigation Report (Revision 2 dated November 6, 2017).

1.1 REPORT PURPOSE

The purpose of this Response and Development Completion Report is to document response action and development activities undertaken in order to secure a No Further Action (NFA) Letter and Certificate of Completion (COC) for the Site. In addition, this report is being submitted in accordance with the requirements outlined in the following agreements:

- Administrative Consent Order (ACO) between Tradepoint Atlantic (formerly Sparrows Point Terminal, LLC) and the MDE, effective September 12, 2014; and
- Settlement Agreement and Covenant Not to Sue (SA) between Tradepoint Atlantic (formerly Sparrows Point Terminal, LLC) and the USEPA, effective November 25, 2014.

The following section (Section 1.2) provides the project background, and Section 1.3 provides an overview of the Site development and response action activities. The response and development

actions performed are described in Section 2 and Section 3, respectively, and conclusions are provided in Section 4.

1.2 PROJECT BACKGROUND

1.2.1 Site Description and History

From the late 1800s until 2012, the production and manufacturing of steel was conducted at Sparrows Point. Iron and steel production operations and processes at Sparrows Point included raw material handling, coke production, sinter production, iron production, steel production, and semi-finished and finished product preparation. In 1970, Sparrows Point was the largest steel facility in the United States, producing hot and cold rolled sheets, coated materials, pipes, plates, and rod and wire. The steel making operations at the Facility ceased in fall 2012. A demolition contractor has demolished the majority of the above-grade structures on the site-wide property from 2013 to present day.

The Site is identified as Parcel A4, which includes an area of 61.4 acres of an approximately 3,100acre former steel mill (**Figure 1**) that operated for over one hundred years. Parcel A4 includes an existing 18.1 acre building that was the former NCMC, with 10 additional acres of associated existing paved laydown areas and roadways. All steel finishing equipment has been removed from the NCMC, and the complex was in use as a materials warehouse prior to the start of development activities. The Site is currently zoned Manufacturing Heavy-Industrial Major (MH-IM).

There is no groundwater use on-site or within the surrounding Tradepoint Atlantic property.

1.2.2 Historical Environmental Activities

The Parcel A4 Development Area was formerly occupied by the NCMC which contained numerous steel manufacturing processes. The NCMC was constructed in 2000. Former operations at the NCMC delivered cold flat-rolled sheeting for either sale or further coating operations conducted elsewhere on the property. The western portion of Parcel A4 historically operated as a pipe production facility (Pipe Mill) beginning in the 1940s. In May 1984, the Pipe Mill was closed under a Closure Plan approved by the MDE on December 12, 1983. Closure activities occurred on the Site and surrounding area through the 1980s and 1990s. In 1998, the Pipe Mill was demolished. More information regarding previous steel finishing activities can be found in the Phase II Investigation Work Plan – Area A: Parcel A4 (Revision 2 dated October 29, 2015).

A Phase I Environmental Site Assessment (ESA) was completed by Weaver Boos Consultants for the entire Sparrows Point property on May 19, 2014. The Phase I ESA identified particular features across the Tradepoint Atlantic property which presented potential risks to the environment. The results of the Phase I ESA are described in more detail in the Parcel A4 Phase II Investigation Work Plan (Revision 2) and the Phase II Investigation Report (Revision 2 dated

November 6, 2017). There were no Recognized Environmental Concerns (RECs) identified within the Parcel A4 development boundaries.

Relevant Solid Waste Management Units (SWMUs) and Areas of Concern (AOCs) were also identified as located in Figure 3-1 from the DCC Report. The following SWMUs/AOCs were identified within the Development Area:

- Pipe Mill Trenches/Sumps (SWMU 49)
- Hydraulic Oil Storage Area (AOC O)

1.2.3 Phase II Investigation

A Phase II Investigation was conducted for all of Parcel A4 in accordance with the Parcel A4 Phase II Investigation Work Plan. The results of the Phase II Investigation are presented in the Parcel A4 Phase II Investigation Report (Revision 2, dated November 6, 2017).

1.3 SITE DEVELOPMENT AND RESPONSE ACTIONS

Parcel A4 has been redeveloped for reuse as a distribution facility (**Figure 2**). The parcel contains the existing NCMC building which has been retained for reuse. The completed development consists of minor modifications to the existing facility including paving of additional area, truck bay construction, minor utility relocation and storm drain connections, and lighting and security improvements. The development area consisted of the entirety of the 61.4-acre parcel.

The response and development actions approved for protection of human health and the environment at the Site included proper abandonment of wells and temporary groundwater sample points (piezometers); and delineation, excavation, and off-site disposal of cadmium-contaminated media.

2.0 **RESPONSE ACTIVITIES**

2.1 SUPPLEMENTAL DRO DELINEATION

Elevated Oil & Grease was identified above the Project Action Limit (PAL) of 6,200 milligrams per kilogram (mg/kg) in two soil samples collected from Parcel A4 (A4-002-SB-5 at 17,600 mg/kg and A4-008-SB-1 at 12,400 mg/kg). Total Petroleum Hydrocarbons (TPH) Diesel Range Organics (DRO) and Gasoline Range Organics (GRO) were analyzed at four soil boring locations including A4-008-SB, with no detections above the action limit of 6,200 mg/kg. The potential mobility of non-aqueous phase liquid (NAPL) to groundwater was investigated via the installation of two temporary screening piezometers (installed October 10 and 11, 2016) at location A4-002-SB (the most heavily impacted boring with a detection of 17,600 mg/kg) with screen intervals from 18 to 28 and 5 to 20 feet below ground surface (bgs). During the 0-hour, 48-hour, and 30-day measurements, NAPL was not identified and it was determined that free petroleum product (NAPL) is not present at quantities that are likely to migrate.

The delineation of elevated detections of Oil & Grease is complete. Boring location A4-002-SB was identified as the most likely source area where NAPL could potentially be present at quantities that could migrate. Soils potentially impacted by Oil & Grease have been present for many years and migration pathways associated with existing utilities that may cause off-site migration or surface discharges should be apparent by now. None of the piezometers installed in Parcel A4 showed any evidence of NAPL, and no additional investigation is warranted.

2.2 SUPPLEMENTAL CADMIUM DELINEATION AND EXCAVATION

The Phase II investigation identified an elevated concentration of cadmium (33,600 mg/kg) within the subsurface soil sample collected from the 3 to 4 feet bgs interval from A4-013-SB. Excavation of the soil containing elevated concentrations of cadmium was selected as the preferred remedial response action to address the impacts in the vicinity of A4-013-SB. To delineate the elevated cadmium impacts at location A4-013-SB, a total of 67 supplemental borings (including resampling at the original location) were completed between December 8, 2016 and December 20, 2016. **Figure 3** shows these delineation boring locations, as well as the locations that yielded soil concentrations above the delineation criterion. Following delineation, remedial excavation was implemented on October 3, 2019 in accordance with the approved Work Plan entitled Delineation Activities and Proposed Excavation of Cadmium Impacted Soil for Parcel A4 (dated April 21, 2017).

The completed excavation activities were documented in the Response Action Completion Report: A4-013 Cadmium Response Area (dated July 14, 2020 and approved on September 14, 2020) included in **Appendix D**. A total of approximately 26 cubic yards (bank) of soil was removed from two locations designated as "northern" and "southern" during excavation. Waste

characterization sample results indicated that approximately 11 cubic yards (bank) of the excavated material, all of which originated from the southern excavation, was hazardous (with a reported cadmium Toxicity Characteristic Leaching Procedure concentration of 10 milligrams per liter [mg/L]) and was hauled offsite on for disposal at Envirite of Pennsylvania, Inc. in York, PA. The non-hazardous excavated material was disposed of onsite at Greys Landfill. Additional details, including the disposal manifest and Land Disposal Restriction and Certification forms are provided in the Response Action Completion Report. Post-excavation sidewall and bottom samples were collected to confirm removal above the excavation criterion (determined through preliminary risk screening) of 550 mg/kg. Both the northern and southern excavations were backfilled to the existing grade with clean fill. Backfilling was conducted on February 21, 2020 by ECLS.

2.3 WELL ABANDONMENT

Piezometers A4-001-PZ, A4-007-PZ, A4-010-PZ, A4-012-PZ, A4-013-PZ, A4-014-PZ, and A4-019-PZ installed for the Phase II investigation were properly abandoned in accordance with Code of Maryland Regulations (COMAR) COMAR 26.04.04.34 through 36 in January 2017. Piezometers A4-005-PZ, A4-007-PZ, and A4-012-PZ were scheduled to be abandoned but were found to be destroyed during development activities. NAPL screening piezometers A4-002-PZ and A4-002a-PZ were installed due to visual observations of NAPL in the soil core at soil boring location A4-002-SB and an elevated concentration of Oil & Grease. NAPL was not detected in either piezometer during the required 0-hour, 48-hour, and 30-day gauging measurements. Both locations were observed to have been destroyed (following the completion of the 30-day NAPL gauging measurements) by vehicle traffic or other causes. Piezometer abandonment records are provided in **Appendix E**.

3.0 SITE DEVELOPMENT ACTIVITIES

This section presents a summary of the completed development work as well as materials management and other protocols that were followed during the development of Parcel A4 to adequately mitigate potential risks for future uses of the property.

Oversight was performed by a field technician provided by Geo-Technology Associates, Inc. (GTA) during development activities to perform dust monitoring and ensure compliance with environmental regulations and the development plans. Daily field reports prepared by the field technician are provided as an electronic attachment. The Pavement/Cap Summary (Revised) letter provided by GTA (**Appendix F**) states that development activities were completed in general accordance with the development plans (**Appendix G**). This letter serves as the Completion of Remedial Actions letter for this project. Development activities began on December 23, 2016, with Whiting-Turner as the General Contractor. Select photos from general development activities and notable occurrences are included in **Appendix H**.

Tradepoint Atlantic submitted a proposed development plan to construct an access road to connect the site development with the adjacent Bethlehem Boulevard (**Figure 4**) via email on May 2, 2017 (**Appendix B**). The MDE approved the plan on May 16, 2017. Development plans for the access road are provided in **Appendix I**.

3.1 PRE-CONSTRUCTION MEETING

Prior to any earthwork being conducted on-site, a pre-construction meeting was held to address proper operating procedures for working on-site and handling potentially contaminated material.

3.2 GRADING AND SITE PREPARATION

Site grading activities were minimal, with no major excavations conducted. The maximum depth of excavation was 6 feet to allow for installation of new footers for the truck wells. Development activities were primarily limited to the placement of concrete or asphalt pavement and aggregate subbase where needed. Any material that was not suitable for compaction was excavated and replaced with subbase material as described in Section 3.4.

3.3 CAPPING

A Screening Level Risk Assessment (SLRA) was completed based on the analytical data obtained from the characterization of surface and subsurface soils in Parcel A4. The results of the SLRA, presented in the Phase II Investigation Report, indicated that no capping remedy was required.

3.4 SOIL MANAGEMENT

The field technician monitored utility trenching activities for signs of potential contamination. In

particular, soils were visually inspected for the presence of staining, petroleum waste materials, or other indications of contamination that may be different than what was already characterized. No visibly impacted materials were noted during development activities.

Soil removed from any lighting or minor utility excavations (minor storm drain connections for each new truck well) was stockpiled in a suitable location in accordance with the Materials Management Plan (MMP) for the Sparrows Point Facility (Papadopulos & Associates, et al., June 17, 2015). Approximately 4,200 tons of soil were stockpiled in the northeast corner of the site. Stockpiles were managed to prevent the erosion and off-site migration of stockpiled materials. Samples of stockpiled materials were submitted for laboratory analysis prior to removal. Two laboratory reports are provided in **Appendix J**. All stockpiled soil was transported to Parcel B6 by MCM Management Co. for use as fill. No excess material left the 3,100-acre property.

In January 2017, a small amount of surface material (approximately 480 cubic yards of slag and CR-6, less than 6 inches deep) was scraped from the surface for use as fill throughout the Site. Additionally, #57 stone was brought on-site as fill from the Martin Marietta (formerly Blue Grass) Texas Quarry in Cockeysville, Maryland. Material from this quarry has been approved by the MDE as clean fill subsequent to its use on Parcel A4, as shown in the attached historical certification and MDE approval of this material (**Appendix K**).

3.5 WATER MANAGEMENT

No new stormwater facilities were proposed for construction at the Site. Minimal dewatering was required for the truck well on the north side of the building. All water removed from the truck well excavation was directed to existing stormwater infrastructure that conveyed water to the Humphrey's Creek Wastewater Treatment Plant.

3.6 DUST CONTROL

To limit worker exposure to contaminants borne on dust and windblown particulates, dust control measures were implemented, if warranted when construction activities were performed in areas with impacted soil. The action level used to determine the need for dust suppression techniques (e.g. watering and/or misting) and/or continuous monitoring during the development activities on Site was 1.0 milligrams per cubic meter (mg/m³). This is more stringent than the site-specific dust action levels, Occupational Safety and Health Administration's Permissible Exposure Limits, and American Conference of Governmental Industrial Hygienists' Threshold Limit Values.

If visible dust was generated in the breathing zone, air monitoring was implemented as follows:

- At the start of intrusive activities;
- Periodically during intrusive activities;

Air monitoring was performed using a TSI DustTrak II testing device. Dust monitor readings were recorded on the daily field logs. If the action level (1.0 mg/m³) was exceeded as a result of conditions occurring at the Site, dust suppression measures were implemented.

Concurrent with the work zone air monitoring, perimeter air monitoring was also performed to ensure contaminants were not migrating off-site. Perimeter monitoring included monitoring at both the downwind and upwind boundaries of the Site. If exceedances attributable to Site conditions were identified downwind for more than five minutes or if visible dust was detected, dust control measures and additional monitoring were implemented. The dust suppression measures included wetting or misting through use of a hose connected to an available water supply or a water truck stationed on Site.

Dust control measures were implemented as described above to address dust generated as a result of construction and response activities conducted on Site. However, based on the nature of the area and/or activities performed in areas surrounding the Site, it is possible that windblown particulates may have come from surrounding areas. The dust concentration in the upwind portion of the Site was considered when monitoring dust levels in the work zone.

3.7 HEALTH AND SAFETY

All Response Phase activities were conducted under the site-specific health and safety plan (HASP) provided as *Appendix C* of the Cold Mill Building Redevelopment Work Plan (Revision 1) dated November 29, 2016. All development work was conducted under the Cold Mill Building Redevelopment Work Plan.

3.8 INSTITUTIONAL CONTROLS (FUTURE LAND USE CONTROLS)

Long-term conditions related to future use of the Site will be described within the NFA and COC. These conditions are anticipated to include the following:

- A restriction that limits the use of the property to industrial land use.
- A restriction prohibiting the use of groundwater for any purpose at the Site and a requirement to characterize, containerize, and properly dispose of groundwater in the event of deep excavations encountering groundwater.
- Notice to MDE prior to any future soil disturbance activities at the Site below areas designated for engineering controls. This written notice will be required prior to any planned excavation activities at the Site
- Requirement for a HASP in the event of any future excavations at the Site.
- Complete appropriate characterization and disposal of any future material excavated from the Site in accordance with applicable local, state, and federal requirements.

The responsible party will file the above deed restrictions as defined by the MDE Voluntary Cleanup Program in the NFA and COC. The entire Site will be subject to the industrial use groundwater use restrictions and soil disturbance notification requirements.

3.9 POST REMEDIATION REQUIREMENTS

Post remediation requirements will include compliance with the conditions specified in the NFA, COC, and the deed restrictions recorded for the Site. Deed restrictions will be recorded within 30 days after receipt of the final NFA.

In addition, the MDE will be provided with a written notice prior to any planned excavation activities at the Site. Written notice of planned excavation activities will include the proposed location of the excavation, health and safety protocols (as required), clean fill source (as required), and proposed characterization and disposal procedures.

4.0 CONCLUSION

Between December 23, 2016 and May 2017, response and development actions were conducted as part of the redevelopment of the Site identified as Parcel A4. The primary response and development actions included a supplemental DRO delineation, a supplemental cadmium delineation, excavation and off-site disposal of cadmium-impacted soil, abandonment of temporary groundwater collection points and wells, grading, paving, and security improvements.

As a result of the information contained herein, it has been demonstrated that the response and development actions have been completed in accordance with the recommendations for remediation specified in the Phase II Investigation Report and the approved Cold Mill Building Redevelopment Work Plan. An As-Built Certification Letter prepared by the Environmental Professional (EP), a Professional Engineer registered in Maryland, is provided in **Appendix F** to certify that the response actions have been completed in accordance with the recommendations specified in the Phase II Investigation Report and the Cold Mill Building Redevelopment Work Plan and that the Site is suitable for occupancy and use.

With completed construction and redevelopment of the Site, the applicable requirements for obtaining a NFA Letter and COC for this Site have been fulfilled. Therefore, Tradepoint Atlantic is respectfully requesting issuance of a NFA Letter for the Site at this time. Tradepoint Atlantic will record the NFA Letter and the deed restrictions identified in the Cold Mill Building Redevelopment Work Plan within 30 days after receipt of the final NFA Letter. Proof of recordation will be submitted to MDE upon receipt from Baltimore County.

FIGURES

APPENDIX A

References List

Parcel A4

- ARM Group, Inc. (2015). Building Occupancy Assessment for New Cold Mill Complex Area A: Parcel A4. April 13, 2015.
- ARM Group, Inc. (2015). *Phase II Investigation Work Plan, Area A: Parcel A4.* Revision 2. October 29, 2015.
- ARM Group, Inc. (2016). Cold Mill Building Redevelopment Work Plan Area A: Parcel A4. Revision 1. November 29, 2016.
- ARM Group, Inc. (2017). Delineation Activities and Proposed Excavation of Cadmium Impacted Soil, Area A: Parcel A4. Revision 0. April 21, 2017.
- ARM Group, Inc. (2017). *Phase II Investigation Report Area A: Parcel A4.* Revision 2. November 6, 2017.
- ARM Group, LLC. (2020). Response Action Completion Report: A4-013 Cadmium Response Area. Revision 0. July 14, 2020
- S.S Papadopulos & Associates, Inc. and Jenkins Environmental Inc. (2015). *Materials Management Plan for the Sparrows Point Facility*. June 17, 2015.
- Weaver Boos Consultants (2014). Phase I Environmental Site Assessment: Former RG Steel Facility. Final Draft. May 19, 2014.

APPENDIX B

From: James Calenda [mailto:jcalenda@enviroanalyticsgroup.com]
Sent: Friday, December 02, 2016 11:55 AM
To: Taylor Smith
Subject: RE: Parcel A-4 Cold Mill Building Redevelopment Plan Truck Dock Installation

Just heard back from Ruth and all they needed was the revised Appendix C.

From: Taylor Smith [mailto:tsmith@armgroup.net]
Sent: Friday, December 02, 2016 10:16 AM
To: James Calenda <<u>jcalenda@enviroanalyticsgroup.com</u>>
Subject: RE: Parcel A-4 Cold Mill Building Redevelopment Plan Truck Dock Installation

James,

Please see the attached HASP for the Parcel A4 Cold Mill Redevelopment Plan which was revised in accordance with Ruth's comment.

I was able to modify the PDF (this document was generated by EAG) to add the Dusk Mask to Section 5.2. Please let me know if any other changes are required.

Thank you,

Taylor R. Smith Staff Engineer

ARM Group Inc. 9175 Guilford Road Suite 310 Columbia, MD 21042 Phone: 410-290-7775 (x2007) Cell: 443-340-1248

www.armgroup.net

Consider the environ ment. Please don't unnecessarily print this e-mail.

This electronic message and its attachments are forwarded to you for convenience and "for information only." This electronic message contains information that is intended solely for the person or entity to which it is addressed and may contain information that is confidential or otherwise protected from disclosure. Any review, retransmission, dissemination or other use of or taking of action in reliance upon this information by persons or entities other than the intended recipient is prohibited.

From: James Calenda [mailto:jcalenda@enviroanalyticsgroup.com]
Sent: Friday, December 02, 2016 9:45 AM
To: Eric Magdar; Neil Peters; Taylor Smith
Subject: Fwd: Parcel A-4 Cold Mill Building Redevelopment Plan Truck Dock Installation

See below from Ruth. Let me know if you can make this requested revision.

<<u>jennifer.sohns@maryland.gov</u>>, James Calenda <<u>jcalenda@enviroanalyticsgroup.com</u>>, Mark Mank -MDE-

(mark.mank@maryland.gov) <mark.mank@maryland.gov>, Weissbart, Erich <weissbart.erich@epa.gov>

Cc: Craven, Laura <<u>lcraven@wcgrp.com</u>>, Russ Becker <<u>rbecker@enviroanalyticsgroup.com</u>>,

<u>RLUTZ@SAUL.COM</u> <<u>rlutz@saul.com</u>>, Dorgan, Doug <<u>ddorgan@wcgrp.com</u>>

From: Prince, Ruth <<u>prince.ruth@epa.gov</u>>

Sent: Friday, December 2, 2016 9:40 AM

Subject: RE: Parcel A-4 Cold Mill Building Redevelopment Plan Truck Dock Installation

To: Barbara Brown -MDE- <barbara.brown1@maryland.gov>, Jennifer Sohns -MDE-

Hi All – EPA has reviewed this plan and there is one omission in the Appendix C Health and Safety Plan, Section 5.2, modified Level D Protection. The list of PPE does not include the dust mask. Please revise to include, send to the Agencies electronically today and according to our discussion yesterday, the plan is approved for a Monday Dec. 5 start.

Ruth Prince, PhD Toxicologist 3LC10 Land and Chemicals Division U.S. Environmental Protection Agency Region III 1650 Arch St. Philadelphia, PA 19103-2029 215-814-3118 prince.ruth@epa.gov

From: James Calenda [mailto:jcalenda@enviroanalyticsgroup.com]
Sent: Tuesday, November 29, 2016 5:48 PM
To: Barbara Brown -MDE- <<u>barbara.brown1@maryland.gov</u>>; Jennifer Sohns -MDE-<<u>jennifer.sohns@maryland.gov</u>>; Mark Mank -MDE- (<u>mark.mank@maryland.gov</u>)
<<u>mark.mank@maryland.gov</u>>; Weissbart, Erich <<u>Weissbart.Erich@epa.gov</u>>; Prince, Ruth
<<u>Prince.Ruth@epa.gov</u>>
Cc: Russ Becker <<u>rbecker@enviroanalyticsgroup.com</u>>; Dorgan, Doug <<u>ddorgan@wcgrp.com</u>>; Craven, Laura
<<u>lcraven@wcgrp.com</u>>; <u>RLUTZ@SAUL.COM</u>
Subject: Parcel A-4 Cold Mill Building Redevelopment Plan Truck Dock Installation

All,

Per our discussion earlier today during the conference call, please use the link below to download a streamlined version of the A-4 Cold Mill Building Redevelopment Plan that solely addresses the proposed truck dock installation. This work plan has been revised in order to facilitate an expedited review from both EPA and MDE in order to gain approval for the truck dock installation. Hard copies will be prepared tomorrow and should be delivered Thursday morning via Fed Ex. If anyone has questions regarding this work plan submission, feel free to contact me directly.

https://app.box.com/s/15p3day6adz1at88kkqa7sqhlhgh4isi

Thanks James

James Calenda Project Manager EnviroAnalytics Group, LLC 1650 Des Peres Road, Suite 303 St. Louis, Missouri 63131 Cell: 314-620-3056 jcalenda@enviroanalyticsgroup.com

www.enviroanalyticsgroup.com

From: Barbara Brown -MDE- [mailto:barbara.brown1@maryland.gov]
Sent: Tuesday, May 16, 2017 9:57 AM
To: Pete Haid <phaid@tradepointatlantic.com
; Jennifer Sohns -MDE- <jennifer.sohns@maryland.gov
Cc: James Calenda <jcalenda@enviroanalyticsgroup.com
Subject: Re: Access World Entry Road Extension</pre>

Hello Pete

TPA may proceed with the installation of the access road as described with the following requirements:

1. All work must be completed under a site specific Health and Safety Plan.

2. Grading work, including soil management and dust monitoring must comply with the Soil Management Plan.

3. Contact MDE if any unusual conditions are encountered-for example petroleum soils.

Please provide the contact information for the environmental professional who will be on-site for the work.

If you have any questions regarding this approval please contact me.

Barbara Brown MDE Project Coordinator

On Tue, May 2, 2017 at 10:12 AM, Pete Haid <<u>phaid@tradepointatlantic.com</u>> wrote:

Barbara:

Good morning. Attached is the drawing of the proposed section of entry road for the Access World building. We had discussed this briefly during our site meeting last week. This work will result in minimal ground disturbance or fill. It will connect two existing roads that are roughly on the same grade and will run a new 4' strip along an existing road shoulder. The work will take between one to two weeks.

Please let me know if you require additional information.

Thanks.

Pete

Barbara Brown MDE-LRP-VCP Section Head direct 410 537 3212 general 410 537 3493

<u>Click here</u> to complete a three question customer experience survey.

APPENDIX C

October 7, 2016

Maryland Department of Environment 1800 Washington Boulevard Baltimore MD, 21230

Attention: Ms. Barbara Brown

Subject: Request to Enter Temporary CHS Review for Parcel A-4

Ms. Brown:

The conduct of any environmental assessment and cleanup activities on the Tradepoint Atlantic property, as well as any associated development, is subject to the requirements outlined in the following agreements:

- Administrative Consent Order (ACO) between Tradepoint Atlantic (formerly Sparrows Point Terminal, LLC) and the Maryland Department of the Environment (effective September 12, 2014); and
- Settlement Agreement and Covenant Not to Sue (SA) between Tradepoint Atlantic (formerly Sparrows Point Terminal, LLC) and the United States Environmental Protection Agency (effective November 25, 2014).

On September 11, 2014, Tradepoint Atlantic submitted an application to the Maryland Department of the Environment's (Department) Voluntary Cleanup Program (VCP). Parcel A-4 is part of the acreage that remains subject to the Multimedia Consent Decree between Bethlehem Steel Corporation, the United States Environmental Protection Agency (EPA), and the Department (effective October 8, 1997) as amended.

In consultation with the Department, Tradepoint Atlantic affirms that it desires to accelerate the assessment, remediation and redevelopment of certain sub-parcels within the larger site due to current market conditions. To that end, the Department and Tradepoint Atlantic agree that the Controlled Hazardous Substance (CHS) Act (Section 7-222 of the Environment Article) and the CHS Response Plan (COMAR 26.14.02) shall serve as the governing statutory and regulatory authority for completing the development activities on Parcel A-4 and complement the statutory requirements of the Voluntary Cleanup Program (Section 7-501 of the Environment Article).

Upon submission of a Site Response and Development Work Plan and completion of the remedial activities for the sub-parcel, the Department shall issue a "No Further Action" letter upon a recordation of an environmental covenant describing any necessary land use controls for the specific sub-parcel. At

such time that all the sub-parcels within the larger parcel have completed remedial activities, Tradepoint Atlantic shall submit to the Department a request for issuing a Certificate of Completion (COC) as well as all pertinent information concerning completion of remedial activities conducted on the parcel. Once the VCP has completed its review of the submitted information it shall issue a COC for the entire parcel described in Tradepoint Atlantic's VCP application.

Alternatively, Tradepoint Atlantic or other entity may elect to submit an application for a specific subparcel and submit it to the VCP for review and acceptance. If the application is received after the cleanup and redevelopment activities described in this work plan are implemented and a No Further Action letter is issued by the Department pursuant to the CHS Act, the VCP shall prepare a No Further Requirements Determination for the sub-parcel.

If Tradepoint Atlantic or other entity has not carried out cleanup and redevelopment activities described in the work plan, the cleanup and redevelopment activities may be conducted under the oversight authority of either the VCP or the CHS Act, so long as those activities comport with this work plan.

Engineering and institutional controls approved as part of this Site Response and Development Work Plan shall be described in documentation submitted to the Department demonstrating that the exposure pathways on the sub-parcel are addressed in a manner that protects public health and the environment. This information shall support Tradepoint Atlantic's request for the issuance of a COC for the larger parcel.

Sincerely, Tradepoint Atlantic

John M. Martin III Development Director

APPENDIX D

ARM Group LLC

Engineers and Scientists

July 14, 2020

Ms. Barbara Brown Project Coordinator Maryland Department of the Environment 1800 Washington Boulevard Baltimore, MD 21230

> Re: Response Action Completion Report: A4-013 Cadmium Response Area Area A: Parcel A4 Tradepoint Atlantic Sparrows Point, MD 21219

Dear Ms. Brown:

ARM Group LLC (ARM), on behalf of EnviroAnalytics Group, LLC (EAG), has prepared this Response Action Completion Report for the Maryland Department of the Environment (MDE) and the United States Environmental Protection Agency (USEPA) to document the implementation of a remedial excavation to remove material containing elevated cadmium on a portion of the Tradepoint Atlantic property that is designated as Area A: Parcel A4 (the Site), which is shown on **Figure 1**.

Project Background

During the Phase II Investigation of Parcel A4, an elevated concentration of cadmium (33,600 mg/kg) was identified within the subsurface soil sample collected from 3 to 4 feet below ground surface (bgs) from soil boring A4-013-SB. Additional delineation of the elevated cadmium impacts at A4-013-SB was performed, and excavation of the material containing elevated concentrations of cadmium was selected as the preferred remedial response action to address the impacts observed in the vicinity of A4-013-SB (the Response Area). The complete findings of the delineation and the implementation protocols for the proposed remedial excavation were presented within a Work Plan entitled Delineation Activities and Proposed Excavation of Cadmium Impacted Soil for Parcel A4 (dated April 21, 2017). The criterion for material removal (determined through a preliminary risk screening analysis) was established as a cadmium concentration of 550 mg/kg. The Work Plan was approved by the MDE and USEPA on April 24, 2017.

Response Action Implementation

The preliminary extents of the excavations required to remove the cadmium contaminated soil, as presented in the Work Plan, were based on the cadmium data from the preceding delineation. Two locations exceeded 550 mg/kg of cadmium (A4-013-SB and A4-013Q-SB). Soil was excavated from the Response Area on October 3, 2019. The excavations were completed to final depths of 6 feet and 8 feet bgs at locations A4-013-SB and A4-013Q-SB, respectively. A total of approximately 26 cubic yards (bank) of potentially impacted material was removed. The completed excavation boundaries for the Response Area are shown on **Figure 2**. A photograph log of the implementation is included as **Attachment 1**.

All response activities were conducted in accordance with the property-wide Health and Safety Plan (HASP) developed by EAG. Excavation work was performed by Enterprise Network Resolutions Contracting, LLC (ENRC). Response Action oversight was performed by an ARM Environmental Professional (EP).

Materials Management and Disposal

Excavated material was segregated into two stockpiles, one for the excavation around A4-013-SB and the other for the excavation around A4-013Q-SB. Each of the stockpiles was placed adjacent to the respective excavation on polyethylene sheeting to protect the ground surface. Weighted polyethylene sheets were used to cover the stockpiles at the end of the excavation activities and the piles remained covered in order to minimize the generation of dust and prevent run-on/off until disposal. Visual dust monitoring was performed during excavation. No visual dust migration was observed; therefore, no dust suppression techniques were implemented. Groundwater was not encountered during excavation; thus, water management was not required.

One composite sample was collected from each of the excavation stockpiles. Each composite sample consisted of 10 randomly selected grab aliquots from the designated stockpile. The composite samples were submitted to Caliber Analytical Services for TCLP analysis to facilitate proper disposal. Analytical results from the waste characterization soil samples are summarized (detections only) in **Table 1**. The complete laboratory report from the waste characterization testing is included as **Attachment 2**. The waste characterization sample results indicated that excavated material in the southern stockpile (associated with location A4-013-SB) was hazardous (with a reported cadmium TCLP concentration of 10 mg/L) and required appropriate disposal offsite. The material in the northern stockpile (associated with location A4-013Q-SB) was non-hazardous and was disposed of onsite at Greys Landfill on February 29, 2020.

Because the analytical results indicated that the stockpiled material from the southern excavation must be handled as hazardous waste, the material was hauled offsite on February 20, 2020 for disposal at Envirite of Pennsylvania, Inc. in York, PA. The disposal manifest and Land Disposal Restriction and Certification forms are included in **Attachment 3**.

Confirmation Sampling

Once excavation activities were completed, confirmation soil samples were collected from the sidewalls at a rate of one sample from each sidewall, and from the bottom of each of the excavation pits to confirm that all soils exceeding 550 mg/kg of cadmium were removed. The confirmation samples were submitted to Pace Analytical Services, Inc. (PACE) and analyzed for cadmium via USEPA Method 6010C. The analytical cadmium results for the confirmation soil samples are provided in **Table 2**. The complete laboratory report from the cadmium confirmation sampling is included as **Attachment 4**. The confirmation sample locations and results are shown on **Figure 3**. Confirmation samples collected from the bottom of the excavations and along the sidewalls all yielded cadmium concentrations below 550 mg/kg, indicating that the extent of the elevated cadmium contamination was adequately removed.

Backfilling

A

R

Μ

Both the northern and southern excavations were backfilled to the existing grade with clean fill (#57 stone from Martin Marietta). Backfilling was conducted on February 21, 2020 by ECLS. The stone was placed in 6-inch lifts and compacted with the excavator bucket. Photographs of the completed backfilling are provided in **Attachment 1**.

If you have any questions, or if we can provide any additional information at this time, please do not hesitate to contact ARM Group LLC at 410-290-7775.

Respectfully Submitted, ARM Group LLC

Melissa Replogle

Melissa Replogle, E.I.T. Project Engineer

G

r

0

E. Mughe

Eric S. Magdar, P.G. Vice President

L

р

u

L

С

FIGURES

TABLES
Table 1Summary of Waste Characterization Sample ResultsParcel A4 - A4-013-SB ExcavationTradepoint AtlanticSparrows Point, Maryland

Parameter	Units	Regulatory Limit	Minimum Detection Limit	A4 North	A4 South
Cadmium	mg/L	1	0.1	ND	10
Lead	mg/L	5	0.5	ND	0.73

ND: Non-detect

Bold indicates regulatory limit exceedance

Table 2Cadmium Confirmation Sample ResultsParcel A4 - A4-013-SB ExcavationTradepoint AtlanticSparrows Point, Maryland

Sample ID	Removal Criterion (mg/kg)	Cadmium Concentration (mg/kg)					
A4-N-1	550	29.1					
A4-N-2	550	1.8					
A4-N-3	550	12.6					
A4-N-4	550	1.2U					
A4-N-5	550	33.9					
A4-S-6	550	48.1					
A4-S-7	550	484					
A4-S-8	550	19.2					
A4-S-9	550	17.1					
A4-S-10	550	74.6					

U: indicates that the analyte was not detected in the sample.

The numeric value represents the sample quantitation/detection limit

ATTACHMENT 1

Excavation of Cadmium-Contaminated Media Area A: Parcel A4-013 Response Area Sparrows Point, Maryland

100419-1: View to the southwest of the completed northern excavation.

100419-2: View to the northeast of the completed southern excavation.

Excavation of Cadmium-Contaminated Media Area A: Parcel A4-013 Response Area Sparrows Point, Maryland

100419-3: View to the northeast of the completed southern excavation. Covered stockpiles are visible to the east of the excavation.

100419-4: View to the southwest of the completed northern excavation. Covered stockpiles are visible to the west of the excavation.

100419-5: View to the south of the completed A4 cadmium excavations and stockpiled soil.

030620-1: View to the north of final backfilled state of A4-013 Response Area.

ATTACHMENT 2

EnviroAnalytics Group, LLC 1650 Des Peres Rd. Suite 303 St. Louis, MO 63131

Date Sampled: 10/03/19 10:00 Date Received: 10/04/19 10:28 Date Issued: 10/11/19

19100404

SDG Number:

Project:	A4 Cadmium Excavation
Site Location:	Sparrows Point, MD

Field Sample ID: A4 North				Matr	ix: Soil	La	ib ID: 191004	404-01
	Result	Unit	LLQ	REGL	Method	Prepared	Analyzed	Init.
Percent Solids							Bat	ch: 22774
Percent Solids	89	%			SM2540G	10/04/19	10/08/19 11:09	DBS
Polychlorinated Biphenyls							Bat	ch: 22780
Aroclor 1016	ND	mg/kg	0.052	50	EPA 8082	10/07/19	10/08/19 18:57	DBS
Aroclor 1221	ND	mg/kg	0.052	50	EPA 8082	10/07/19	10/08/19 18:57	DBS
Aroclor 1232	ND	mg/kg	0.052	50	EPA 8082	10/07/19	10/08/19 18:57	DBS
Aroclor 1242	ND	mg/kg	0.052	50	EPA 8082	10/07/19	10/08/19 18:57	DBS
Aroclor 1248	ND	mg/kg	0.052	50	EPA 8082	10/07/19	10/08/19 18:57	DBS
Aroclor 1254	ND	mg/kg	0.052	50	EPA 8082	10/07/19	10/08/19 18:57	DBS
Aroclor 1260	ND	mg/kg	0.052	50	EPA 8082	10/07/19	10/08/19 18:57	DBS
TCLP Metals							Bat	ch: 22784
Arsenic	ND	mg/L	0.5	5	1311/6020A	10/08/19	10/08/19 15:55	MBC
Barium	ND	mg/L	10	100	1311/6020A	10/08/19	10/08/19 15:55	MBC
Cadmium	ND	mg/L	0.1	1	1311/6020A	10/08/19	10/08/19 15:55	MBC
Chromium	ND	mg/L	0.5	5	1311/6020A	10/08/19	10/08/19 15:55	MBC
Lead	ND	mg/L	0.5	5	1311/6020A	10/08/19	10/08/19 15:55	MBC
Mercury	ND	mg/L	0.02	0.2	1311/6020A	10/08/19	10/08/19 15:55	MBC
Selenium	ND	mg/L	0.1	1	1311/6020A	10/08/19	10/08/19 15:55	MBC
Silver	ND	mg/L	0.5	5	1311/6020A	10/08/19	10/08/19 15:55	MBC
TCLP Semi-Volatiles							Bat	ch: 22792
2-Methylphenol	ND	ug/L	100	200000	1311/8270	10/10/19	10/10/19 20:12	GFH
3+4-Methylphenol	ND	ug/L	200	200000	1311/8270	10/10/19	10/10/19 20:12	GFH
2,4-Dinitrotoluene	ND	ug/L	100	130	1311/8270	10/10/19	10/10/19 20:12	GFH
Hexachloroethane	ND	ug/L	100	3000	1311/8270	10/10/19	10/10/19 20:12	GFH
Hexachlorobenzene	ND	ug/L	100	130	1311/8270	10/10/19	10/10/19 20:12	GFH
Nitrobenzene	ND	ug/L	100	2000	1311/8270	10/10/19	10/10/19 20:12	GFH
Pentachlorophenol	ND	ug/L	500	100000	1311/8270	10/10/19	10/10/19 20:12	GFH
Pyridine	ND	ug/L	100	5000	1311/8270	10/10/19	10/10/19 20:12	GFH
2,4,5-Trichlorophenol	ND	ug/L	100	400000	1311/8270	10/10/19	10/10/19 20:12	GFH
2,4,6-Trichlorophenol	ND	ug/L	100	2000	1311/8270	10/10/19	10/10/19 20:12	GFH
Hexachlorobutadiene`	ND	ug/L	100	500	1311/8270	10/10/19	10/10/19 20:12	GFH

EnviroAnalytics Group, LLC 1650 Des Peres Rd. Suite 303 St. Louis, MO 63131

 Date Sampled:
 10/03/19
 10:00

 Date Received:
 10/04/19
 10:28

 Date Issued:
 10/11/19

19100404

Project:	A4 Cadmium Excavation
Site Location:	Sparrows Point, MD

Field Sample ID: A4 North				Matrix: Soil		Lab ID: 19100404-01				
	Result	Unit	LLQ	REGL	Method	Prepared	Analyzed	lnit.		
TCLP Volatiles							Bat	ch: 22788		
Benzene	ND	ug/L	7	500	1311/8260	10/09/19	10/09/19 14:17	GFH		
Carbon Tetrachloride	ND	ug/L	7	500	1311/8260	10/09/19	10/09/19 14:17	GFH		
Chloroform	ND	ug/L	7	6000	1311/8260	10/09/19	10/09/19 14:17	GFH		
1,2-Dichloroethane (EDC)	ND	ug/L	7	500	1311/8260	10/09/19	10/09/19 14:17	GFH		
Tetrachloroethene	ND	ug/L	7	700	1311/8260	10/09/19	10/09/19 14:17	GFH		
Vinyl Chloride	ND	ug/L	7	200	1311/8260	10/09/19	10/09/19 14:17	GFH		
2-Butanone (MEK)	ND	ug/L	14	200000	1311/8260	10/09/19	10/09/19 14:17	GFH		
Chlorobenzene	ND	ug/L	7	100000	1311/8260	10/09/19	10/09/19 14:17	GFH		
1,4-Dichlorobenzene	ND	ug/L	7	7500	1311/8260	10/09/19	10/09/19 14:17	GFH		
1,1-Dichloroethene	ND	ug/L	7	700	1311/8260	10/09/19	10/09/19 14:17	GFH		
Trichloroethene	ND	ug/L	7	500	1311/8260	10/09/19	10/09/19 14:17	GFH		

Notes/Qualifiers:

LLQ- Lowest Level of Quantitation

ND - Not Detected at a concentration greater than or equal to the LLQ.

Approved by:

Just Obher

SDG Number:

QC Chemist

REGL - RCRA Regulatory Limit. For TCLP reference 40CFR, Part 261.24, Table 1 - Maximum Concentration of Contaminants for the Toxicity Characteristic Results reported on a dry weight basis.

EnviroAnalytics Group, LLC 1650 Des Peres Rd. Suite 303 St. Louis, MO 63131

Date Sampled: 10/03/19 10:10 Date Received: 10/04/19 10:28 Date Issued: 10/11/19

19100404

SDG Number:

Project:	A4 Cadmium Excavation					
Site Location:	Sparrows Point, MD					

Field Sample ID: A4 South				Matr	ix: Soil	Lab ID: 19100404-02				
	Result	Unit	LLQ	REGL	Method	Prepared	Analyzed	Init.		
Percent Solids							Bat	ch: 22774		
Percent Solids	83	%			SM2540G	10/04/19	10/08/19 11:09	DBS		
Polychlorinated Biphenyls							Bat	ch: 22780		
Aroclor 1016	ND	mg/kg	0.065	50	EPA 8082	10/07/19	10/08/19 19:24	DBS		
Aroclor 1221	ND	mg/kg	0.065	50	EPA 8082	10/07/19	10/08/19 19:24	DBS		
Aroclor 1232	ND	mg/kg	0.065	50	EPA 8082	10/07/19	10/08/19 19:24	DBS		
Aroclor 1242	ND	mg/kg	0.065	50	EPA 8082	10/07/19	10/08/19 19:24	DBS		
Aroclor 1248	ND	mg/kg	0.065	50	EPA 8082	10/07/19	10/08/19 19:24	DBS		
Aroclor 1254	ND	mg/kg	0.065	50	EPA 8082	10/07/19	10/08/19 19:24	DBS		
Aroclor 1260	ND	mg/kg	0.065	50	EPA 8082	10/07/19	10/08/19 19:24	DBS		
TCLP Metals							Bat	ch: 22784		
Arsenic	ND	mg/L	0.5	5	1311/6020A	10/08/19	10/08/19 16:18	MBC		
Barium	ND	mg/L	10	100	1311/6020A	10/08/19	10/08/19 16:18	MBC		
Cadmium	* 10	mg/L	0.1	1	1311/6020A	10/08/19	10/08/19 16:18	MBC		
Chromium	ND	mg/L	0.5	5	1311/6020A	10/08/19	10/08/19 16:18	MBC		
Lead	0.73	mg/L	0.5	5	1311/6020A	10/08/19	10/08/19 16:18	MBC		
Mercury	ND	mg/L	0.02	0.2	1311/6020A	10/08/19	10/08/19 16:18	MBC		
Selenium	ND	mg/L	0.1	1	1311/6020A	10/08/19	10/08/19 16:18	MBC		
Silver	ND	mg/L	0.5	5	1311/6020A	10/08/19	10/08/19 16:18	MBC		
TCLP Semi-Volatiles							Bat	ch: 22792		
2-Methylphenol	ND	ug/L	100	200000	1311/8270	10/10/19	10/10/19 20:52	GFH		
3+4-Methylphenol	ND	ug/L	200	200000	1311/8270	10/10/19	10/10/19 20:52	GFH		
2,4-Dinitrotoluene	ND	ug/L	100	130	1311/8270	10/10/19	10/10/19 20:52	GFH		
Hexachloroethane	ND	ug/L	100	3000	1311/8270	10/10/19	10/10/19 20:52	GFH		
Hexachlorobenzene	ND	ug/L	100	130	1311/8270	10/10/19	10/10/19 20:52	GFH		
Nitrobenzene	ND	ug/L	100	2000	1311/8270	10/10/19	10/10/19 20:52	GFH		
Pentachlorophenol	ND	ug/L	500	100000	1311/8270	10/10/19	10/10/19 20:52	GFH		
Pyridine	ND	ug/L	100	5000	1311/8270	10/10/19	10/10/19 20:52	GFH		
2,4,5-Trichlorophenol	ND	ug/L	100	400000	1311/8270	10/10/19	10/10/19 20:52	GFH		
2,4,6-Trichlorophenol	ND	ug/L	100	2000	1311/8270	10/10/19	10/10/19 20:52	GFH		
Hexachlorobutadiene`	ND	ug/L	100	500	1311/8270	10/10/19	10/10/19 20:52	GFH		

EnviroAnalytics Group, LLC 1650 Des Peres Rd. Suite 303 St. Louis, MO 63131

 Date Sampled:
 10/03/19
 10:10

 Date Received:
 10/04/19
 10:28

 Date Issued:
 10/11/19

19100404

Project:	A4 Cadmium Excavation					
Site Location:	Sparrows Point, MD					

Field Sample ID:	A4 South Matrix: Soil		x: Soil	Lab ID: 19100404-02					
		Result	Unit	LLQ	REGL	Method	Prepared	Analyzed	Init.
TCLP Volatiles								Bat	ch: 22788
Benzene		ND	ug/L	14	500	1311/8260	10/09/19	10/09/19 14:48	GFH
Carbon Tetrachloride	9	ND	ug/L	14	500	1311/8260	10/09/19	10/09/19 14:48	GFH
Chloroform		ND	ug/L	14	6000	1311/8260	10/09/19	10/09/19 14:48	GFH
1,2-Dichloroethane (I	EDC)	ND	ug/L	14	500	1311/8260	10/09/19	10/09/19 14:48	GFH
Tetrachloroethene		ND	ug/L	14	700	1311/8260	10/09/19	10/09/19 14:48	GFH
Vinyl Chloride		ND	ug/L	14	200	1311/8260	10/09/19	10/09/19 14:48	GFH
2-Butanone (MEK)		ND	ug/L	27	200000	1311/8260	10/09/19	10/09/19 14:48	GFH
Chlorobenzene		ND	ug/L	14	100000	1311/8260	10/09/19	10/09/19 14:48	GFH
1,4-Dichlorobenzene		ND	ug/L	14	7500	1311/8260	10/09/19	10/09/19 14:48	GFH
1,1-Dichloroethene		ND	ug/L	14	700	1311/8260	10/09/19	10/09/19 14:48	GFH
Trichloroethene		ND	ug/L	14	500	1311/8260	10/09/19	10/09/19 14:48	GFH

Notes/Qualifiers:

LLQ- Lowest Level of Quantitation

ND - Not Detected at a concentration greater than or equal to the LLQ.

Approved by:

Matt Obher

SDG Number:

QC Chemist

REGL - RCRA Regulatory Limit. For TCLP reference 40CFR, Part 261.24, Table 1 - Maximum Concentration of Contaminants for the Toxicity Characteristic * - Result exceeds TCLP limit.

Results reported on a dry weight basis.

Chain of Custody Record

Customor	FAG		E-mail address:			jcalend	da@e	nviroa	nviroanalyticsgroup.com				SDG Number: 19100404				<u> </u>		
Contact/Report to:	James Calenda			Project I	Name:	A4 Ca	A4 Cadmium Excavation			4	Samp	led by	y:		GW	1979 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -			
Dhono:	314-686-5623			Project	Number:							L	ΡΟ Νι	umbe	r:				
Fox:				Site Loc	ation:	Sparro	ws P	oint					Page	1	of	1			
rax.								Ar	nalysi	s Req	ueste	d							
					Preserva	tive													
		Date Sampled	Time Sampled	No. of Bottles	Matrix *	PcBs		TCLP Metals	TCLP VOCS	TCLP SVOCS							Sam	pling Ren	narks/
Lab Number	Field Sample ID	10/02/19	1000	1	Sed	X		х	Х	X									
	A4 North	10/02/10	1010	1	Sed	X		Х	Х	X									
	A4 South	10/02/10	1010																
				1															
																			and foregoing the second second
								1											
	0		1		1														
Relinquished by:	Gerald Walsh	ull	Date/Tim	e: /	0/3/19	103	0	Deliv	verab	les:	Re	ceip	t Tem	perat	ure:	Tur		Time:	hor
Received by:	ramline		Date/Tim	e: [[0/4/19	10	or		III CL	P EDD		I emp:		Uni	ce	1010	INEXT Da	y 2-Day Ol	
Relinguished by:			Date/Tim	e:				Cus	tody	Seals:	Com	ment	ts/Spe	ecial l	nstru	ction	5:		
Received by:			Date/Tim	e:				San	nple	Cooler									
Polinguished by:			Date/Tim	e:				Deliv	vered b	y client									
Beeslived by			Date/Tim	e:				C	A.	5									

* W = Water; WW = Wastewater; GW = Groundwater; S = Soil; SL = Sludge

_

_

ATTACHMENT 3

LAND DISPOSAL RESTRICTION & CERTIFICATION FORM

Generator Name: ____ Enviro Analytics Group, LLC ___ U.S. EPA ID No.: ____ MDD 053 945 432

Uniform Manifest No.: 020574683 JJK

_____ LDR Page _____ of _____

Manifest Page No. & Line Item	U.S. EPA Hazardous Waste Code (s)	or WW	LDR Certification (One per Line)	Subcategory	Reference Number(s) of Hazardous Constituents contained in the waste. Complete for F001-F005, F039, D001- D043, Contaminated Soil (10x) and Debris.
1	D006	NWW	A	None	None
				*	
			×		

I hereby certify that all information submitted on this and all associated documents, is complete and accurate to the best of my knowledge and information.

Generator Signature: ______ Title: ______

Printed Name: ______ Date: ______

LAND DISPOSAL RESTRICTION & CERTIFICATION FORM

Generator Name: _____ Enviro Analytics Group, LLC U.S. EPA ID No.: _____ MDD 053 945 432

Uniform Manifest No.: ______020574684 JJK_______ LDR Page _____1 _____ of _____1

Manifest Page No. & Line Item	U.S. EPA Hazardous Waste Code (s)	NWW or WW	LDR Certification (One per Line)	Subcategory	Reference Number(s) of Hazardous Constituents contained in the waste. Complete for F001-F005, F039, D001- D043, Contaminated Soil (10x) and Debris.
1	D006	NWW	A	None	None
-					
	2 - 1				

I hereby certify that all information submitted on this and all associated documents, is complete and accurate to the best of my knowledge and information.

Generator Signature: ______ Title: ______

Printed Name: ______ Date: ______

LAND DISPOSAL RESTRICTION & CERTIFICATION FORM

Generator Name: _____ Enviro Analytics Group, LLC ____ U.S. EPA ID No.: _____ MDD 053 945 432

Uniform Manifest No.: ______020574685 JJK _______LDR Page _____1 _____of ____1

Manifest Page No. & Line Item	U.S. EPA Hazardous Waste Code (s)	NWW or WW	LDR Certification (One per Line)	Subcategory	Reference Number(s) of Hazardous Constituents contained in the waste. Complete for F001-F005, F039, D001- D043, Contaminated Soil (10x) and Debris.
1	D006	NWW	A	None	None
	-				
			-		

I hereby certify that all information submitted on this and all associated documents, is complete and accurate to the best of my knowledge and information.

Generator Signature: ______ Title:

Printed Name: ______ Date: ______ Date: ______

Plea	se pri	int or type.							Form	n Approved.	OMB No. 2	2050-0039
1	UNIF	FORM HAZARDOUS	1. Generator ID Number MDD 053 945 432		2. Page 1 of 1	3. Emergency Re 314-820-	sponse Phone 3036	4. Manifes	t Tracking N	468	3 J.	JK
	5. Ge Ei	enerator's Name and Mailin rwho Analytics Gro 800 Sparrows Point 314-62 arator's Phone:	g Address up, LLC t Bivd. Suite B2, Baitimo 20-3055 Attn: Jamee Ca	re, MD 21219 alanda	1	Generator's Site A Enviro Analy Same	ddress (if different i tlas Graup, Ll	than mailing addr LC	ess)			
	6. Tra	ansporter 1 Company Nam Envirite of Pennaylvi	eria, Inc.				_	U.S. EPA ID	Number 0 010 164	045		
	7. Tra	ansporter 2 Company Nam	ne					U.S. EPA ID	Number			
	8. De	signated Facility Name an Envirte of PA doa U	d Site Address JS Ecology York					U.S. EPA ID	Number	-		
	7 Facili	730 Vogelsong Rd., (717) 84 ity's Phone:	, Yoriç PA 17404 8-1900					PA	010 154	045		
	9a. HM	9b. U.S. DOT Descripti and Packing Group (if a	ion (including Proper Shipping Nar any))	me, Hazard Class, ID Number,		10. No.	Containers Type	11. Total Quantity	12. Unit Wt./Vol.	13.	Waste Code:	S
TOR	X	1.NA3077, Hazan (cadmium)	ious Waste Solid N.O.S	9, PG III	-	1	TCI	22	P	6006		
NERA.		2.					-				2	-
12								a state				1-1-
		3.		-								-
		4.						-				
								11	-			_
	14. S	Special Handling Instruction	ns and Additional Information	Gine batenimaten		W007	2			-		
		Emergency respo	meet:	our real of the last of the					Job# R	OAN-SSC	н	
	15.	GENERATOR'S/OFFERC marked and labeled/placa Exporter, I certify that the I certify that the waste min	DR'S CERTIFICATION: I hereby or rded, and are in all respects in pro- contents of this consignment confinimization statement identified in 4 med Name	declare that the contents of thi oper condition for transport acc form to the terms of the attache to CFR 262.27(a) (if I am a lan	s consignment a cording to applic ed EPA Acknowl ge quantity gen Sig	are fully and accura cable international a ledgment of Conser erator) or (b) (if I an nature	tely described abo Ind national govern ht. h a small quantity g	we by the proper a mental regulation generator) is true.	shipping nam Is. If export sh	e, and are clas nipment and 1	sified, packa am the Prima th Day	aged, ary Year
Ļ	Conc	Ryan Cla	ncy	A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR AND A CONTRAC		1. and	· Cart	Water Street		12	180	120
INT'L	16. In Trans	nternational Shipments sporter signature (for expo	Import to U.S.		Export from L	J.S. Po Da	rt of entry/exit: te leaving U.S.	-				
RTER	17. Tr Trans	ransporter Acknowledgmen sporter 1 Printed/Typed Na	nt of Receipt of Materials		Sig	nature 6	-41-	0.	-	Mor	th Day	Year
ANSPOI	Trans	sporter 2 Printed/Typed Na	MOMESON		Sig	nature	w.	Vm	~	Mor	2 2 th Ith Day	Year
¥ ∏	18. Di	iscrepancy							-			
	18a. (Discrepancy Indication Spa	ace Quantity	Туре		Residu	e	Partial R	ejection	[Full Reje	ection
L E	18b. /	Alternate Facility (or Generation	rator)			Manifest Re	ference Number:	U.S. EPA ID	Number		- T.,	
FACIL	Facili	ity's Phone:						1				
NATED	18c. 8	Signature of Alternate Faci	ility (or Generator)	1						Mo	nth Day	Year
DESIGI	19. H	lazardous Waste Report M	tanagement Method Codes (i.e., c	codes for hazardous waste trea	atment, disposa 3.	I, and recycling sys	tems)	4.				5
	20. D Printe	esignated Facility Owner of ed/Typed Name	or Operator: Certification of receip	t of hazardous materials cover	red by the mani Sig	fest except as noted nature	1 in Item 18a			Mo	nth Day	Year

76

ATTACHMENT 4

Pace Analytical Services, LLC 1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

October 14, 2019

Mr. James Calenda EnviroAnalytics Group, LLC 1600 Sparrows Point Blvd Suite B2 Sparrows Point, MD 21219

RE: Project: A4 Cadmium Excavation Pace Project No.: 30328194

Dear Mr. Calenda:

Enclosed are the analytical results for sample(s) received by the laboratory on October 04, 2019. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

This project follows the April 5, 2016 revision 3 Quality Assurance Project Plan for Sparrows Point Terminal Site, Sparrows Point, MD prepared for EnviroAnalytics Group and is not for PA DEP compliance reporting.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Samantha Bayune

Samantha Bayura samantha.bayura@pacelabs.com (724)850-5622 Project Manager

Enclosures

cc: Ms. Penny Gardner, Environmental Data Quality, Inc. Ms. Shawne M. Rodgers, Environmental Data Quality, Inc.

Pace Analytical Services, LLC 1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

CERTIFICATIONS

Project: A4 Cadmium Excavation Pace Project No.: 30328194

Pennsylvania Certification IDs

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601 ANAB DOD-ELAP Rad Accreditation #: L2417 Alabama Certification #: 41590 Arizona Certification #: AZ0734 Arkansas Certification California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694 **Delaware Certification** EPA Region 4 DW Rad Florida/TNI Certification #: E87683 Georgia Certification #: C040 Florida: Cert E871149 SEKS WET **Guam Certification** Hawaii Certification Idaho Certification **Illinois Certification** Indiana Certification Iowa Certification #: 391 Kansas/TNI Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221 Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086 Maine Certification #: 2017020 Maryland Certification #: 308 Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991

Missouri Certification #: 235 Montana Certification #: Cert0082 Nebraska Certification #: NE-OS-29-14 Nevada Certification #: PA014572018-1 New Hampshire/TNI Certification #: 297617 New Jersey/TNI Certification #: PA051 New Mexico Certification #: PA01457 New York/TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190 Ohio EPA Rad Approval: #41249 Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282 South Dakota Certification Tennessee Certification #: 02867 Texas/TNI Certification #: T104704188-17-3 Utah/TNI Certification #: PA014572017-9 USDA Soil Permit #: P330-17-00091 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 9526 Washington Certification #: C868 West Virginia DEP Certification #: 143 West Virginia DHHR Certification #: 9964C Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L

SAMPLE SUMMARY

Project: A4 Cadmium Excavation

Pace Project No.: 30328194

Lab ID	Sample ID	Matrix	Date Collected	Date Received
30328194001	A4-N-1	Solid	10/03/19 11:00	10/04/19 23:20
30328194002	A4-N-2	Solid	10/03/19 11:05	10/04/19 23:20
30328194003	A4-N-3	Solid	10/03/19 11:10	10/04/19 23:20
30328194004	A4-N-4	Solid	10/03/19 11:15	10/04/19 23:20
30328194005	A4-N-5	Solid	10/03/19 11:20	10/04/19 23:20
30328194006	A4-S-6	Solid	10/03/19 11:25	10/04/19 23:20
30328194007	A4-S-7	Solid	10/03/19 11:30	10/04/19 23:20
30328194008	A4-S-8	Solid	10/03/19 11:35	10/04/19 23:20
30328194009	A4-S-9	Solid	10/03/19 11:40	10/04/19 23:20
30328194010	A4-S-10	Solid	10/03/19 11:45	10/04/19 23:20

SAMPLE ANALYTE COUNT

Project:A4 Cadmium ExcavationPace Project No.:30328194

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
30328194001		EPA 6010C	KAS	1	PASI-PA
		ASTM D2974-87	SHD	1	PASI-PA
30328194002	A4-N-2	EPA 6010C	KAS	1	PASI-PA
		ASTM D2974-87	SHD	1	PASI-PA
30328194003	A4-N-3	EPA 6010C	KAS	1	PASI-PA
		ASTM D2974-87	SHD	1	PASI-PA
30328194004	A4-N-4	EPA 6010C	KAS	1	PASI-PA
		ASTM D2974-87	SHD	1	PASI-PA
30328194005	A4-N-5	EPA 6010C	KAS	1	PASI-PA
		ASTM D2974-87	SHD	1	PASI-PA
30328194006	A4-S-6	EPA 6010C	KAS	1	PASI-PA
		ASTM D2974-87	SHD	1	PASI-PA
30328194007	A4-S-7	EPA 6010C	KAS	1	PASI-PA
		ASTM D2974-87	SHD	1	PASI-PA
30328194008	A4-S-8	EPA 6010C	KAS	1	PASI-PA
		ASTM D2974-87	SHD	1	PASI-PA
30328194009	A4-S-9	EPA 6010C	KAS	1	PASI-PA
		ASTM D2974-87	SHD	1	PASI-PA
30328194010	A4-S-10	EPA 6010C	KAS	1	PASI-PA
		ASTM D2974-87	SHD	1	PASI-PA

PROJECT NARRATIVE

Project: A4 Cadmium Excavation

Pace Project No.: 30328194

Method: EPA 6010C

Description:6010C MET ICPClient:EnviroAnalytics Group, LLCDate:October 14, 2019

General Information:

10 samples were analyzed for EPA 6010C. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3050B with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

Project: A4 Cadmium Excavation

Pace Project No.: 30328194

Sample: A4-N-1	Lab ID:	30328194001	Collected	: 10/03/19	11:00	Received: 10/	04/19 23:20 M	atrix: Solid	
Results reported on a "dry weight"	basis and ar	e adjusted for	percent mo	isture, san	nple si	ze and any diluti	ons.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010C MET ICP	Analytical	Method: EPA 6	6010C Prepa	aration Met	hod: El	PA 3050B			
Cadmium	29.1	mg/kg	1.5	0.30	5	10/08/19 08:09	10/11/19 20:12	7440-43-9	
Percent Moisture	Analytical	Method: ASTM	1 D2974-87						
Percent Moisture	20.3	%	0.10	0.10	1		10/08/19 15:04		

Project: A4 Cadmium Excavation

Pace Project No.: 30328194

Sample: A4-N-2	Lab ID:	30328194002	Collected	: 10/03/19	11:05	Received: 10/	04/19 23:20 Ma	atrix: Solid	
Results reported on a "dry weight"	basis and ar	e adjusted for	percent mo	isture, san	nple siz	ze and any diluti	ons.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010C MET ICP	Analytical	Method: EPA 6	6010C Prepa	aration Met	hod: EF	PA 3050B			
Cadmium	1.8	mg/kg	1.2	0.25	5	10/08/19 08:09	10/11/19 20:24	7440-43-9	
Percent Moisture	Analytical	Method: ASTM	1 D2974-87						
Percent Moisture	7.6	%	0.10	0.10	1		10/08/19 15:04		

Project: A4 Cadmium Excavation

Pace Project No.: 30328194

Sample: A4-N-3	Lab ID:	30328194003	Collected	: 10/03/19	11:10	Received: 10/	04/19 23:20 Ma	atrix: Solid	
Results reported on a "dry weight"	basis and are	e adjusted for	percent mo	isture, san	nple siz	ze and any diluti	ons.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010C MET ICP	Analytical	Method: EPA 6	010C Prepa	aration Met	hod: EF	PA 3050B			
Cadmium	12.6	mg/kg	1.3	0.26	5	10/08/19 08:09	10/11/19 20:26	7440-43-9	
Percent Moisture	Analytical	Method: ASTM	I D2974-87						
Percent Moisture	8.4	%	0.10	0.10	1		10/08/19 15:04		

Project: A4 Cadmium Excavation

Pace Project No.: 30328194

Sample: A4-N-4	Lab ID:	30328194004	Collected	I: 10/03/19	11:15	Received: 10/	04/19 23:20 Ma	atrix: Solid	
Results reported on a "dry weight"	basis and are	e adjusted for	percent mo	isture, sar	nple si	ze and any diluti	ons.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010C MET ICP	Analytical	Method: EPA 6	6010C Prepa	aration Met	hod: El	PA 3050B			
Cadmium	1.2 U	mg/kg	1.2	0.25	5	10/08/19 08:09	10/11/19 20:29	7440-43-9	
Percent Moisture	Analytical	Method: ASTM	1 D2974-87						
Percent Moisture	6.5	%	0.10	0.10	1		10/08/19 15:04		

Project: A4 Cadmium Excavation

Pace Project No.: 30328194

Sample: A4-N-5	Lab ID:	30328194005	Collected	: 10/03/19	11:20	Received: 10/	04/19 23:20 Ma	atrix: Solid	
Results reported on a "dry weight"	basis and ar	e adjusted for	percent mo	isture, sar	nple si	ze and any diluti	ons.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010C MET ICP	Analytical	Method: EPA 6	010C Prepa	aration Met	hod: El	PA 3050B			
Cadmium	33.9	mg/kg	1.3	0.26	5	10/08/19 08:09	10/11/19 20:38	7440-43-9	
Percent Moisture	Analytical	Method: ASTM	D2974-87						
Percent Moisture	11.8	%	0.10	0.10	1		10/08/19 15:04		

Project: A4 Cadmium Excavation

Pace Project No.: 30328194

Sample: A4-S-6	Lab ID:	30328194006	Collected	: 10/03/19	11:25	Received: 10/	04/19 23:20 Ma	atrix: Solid	
Results reported on a "dry weight"	basis and ar	e adjusted for	percent mo	isture, san	nple siz	ze and any diluti	ons.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010C MET ICP	Analytical	Method: EPA 6	010C Prepa	aration Met	nod: EF	PA 3050B			
Cadmium	48.1	mg/kg	1.3	0.26	5	10/08/19 08:09	10/11/19 20:40	7440-43-9	
Percent Moisture	Analytical	Method: ASTM	D2974-87						
Percent Moisture	9.0	%	0.10	0.10	1		10/08/19 15:04		

Project: A4 Cadmium Excavation

Pace Project No.: 30328194

Sample: A4-S-7	Lab ID:	30328194007	Collected	: 10/03/19	11:30	Received: 10/	04/19 23:20 Ma	atrix: Solid	
Results reported on a "dry weight"	basis and are	e adjusted for	percent moi	isture, san	nple si	ze and any diluti	ons.		
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010C MET ICP	Analytical	Method: EPA 6	010C Prepa	ration Met	hod: Ef	PA 3050B			
Cadmium	484	mg/kg	1.3	0.26	5	10/08/19 08:09	10/11/19 20:42	7440-43-9	
Percent Moisture	Analytical	Method: ASTM	I D2974-87						
Percent Moisture	10.8	%	0.10	0.10	1		10/08/19 15:04		

Project: A4 Cadmium Excavation

Pace Project No.: 30328194

Sample: A4-S-8	Lab ID:	30328194008	Collected	: 10/03/19	11:35	Received: 10/	04/19 23:20 Ma	atrix: Solid	
Results reported on a "dry weight"	basis and ar	e adjusted for	percent mo	isture, san	nple si	ze and any diluti	ons.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010C MET ICP	Analytical	Method: EPA 6	010C Prepa	aration Met	hod: El	PA 3050B			
Cadmium	19.2	mg/kg	1.4	0.29	5	10/08/19 08:09	10/11/19 20:45	7440-43-9	
Percent Moisture	Analytical	Method: ASTM	I D2974-87						
Percent Moisture	21.5	%	0.10	0.10	1		10/08/19 15:05		

Project: A4 Cadmium Excavation

Pace Project No.: 30328194

Sample: A4-S-9	Lab ID:	30328194009	Collected	: 10/03/19	11:40	Received: 10/	04/19 23:20 Ma	atrix: Solid	
Results reported on a "dry weight"	basis and ar	e adjusted for	percent moi	isture, san	nple siz	ze and any diluti	ons.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010C MET ICP	Analytical	Method: EPA 6	010C Prepa	ration Meth	nod: EF	PA 3050B			
Cadmium	17.1	mg/kg	1.3	0.27	5	10/08/19 08:09	10/11/19 20:47	7440-43-9	
Percent Moisture	Analytical	Method: ASTM	D2974-87						
Percent Moisture	12.1	%	0.10	0.10	1		10/08/19 15:05		

Project: A4 Cadmium Excavation

Pace Project No.: 30328194

Sample: A4-S-10	Lab ID:	30328194010	Collected	: 10/03/19	11:45	Received: 10/	04/19 23:20 Ma	atrix: Solid	
Results reported on a "dry weight"	basis and are	e adjusted for	percent moi	isture, san	nple si	ze and any diluti	ons.		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010C MET ICP	Analytical	Method: EPA 6	010C Prepa	ration Met	nod: El	PA 3050B			
Cadmium	74.6	mg/kg	1.4	0.28	5	10/08/19 08:09	10/11/19 20:49	7440-43-9	
Percent Moisture	Analytical	Method: ASTM	D2974-87						
Percent Moisture	16.4	%	0.10	0.10	1		10/08/19 15:05		D6

QUALITY CONTROL DATA

Project:	A4 Cad	dmium Excav	ation										
Pace Project No.:	303281	194											
QC Batch:	3650	71		Anal	Analysis Method:								
QC Batch Method:	EPA 3	3050B		Anal	ysis Descri	ption:	6010C MET	-					
Associated Lab Sar	nples:	303281940 303281940	01, 3032819400 08, 3032819400	2, 3032819 9, 3032819	94003, 303 94010	28194004,	303281940	05, 3032	28194006, 30	328194007	7,		
METHOD BLANK:	177081	11			Matrix: S	olid							
Associated Lab Sar	nples:	303281940 303281940	01, 3032819400 08, 3032819400	2, 3032819 9, 3032819	94003, 303 94010	28194004,	303281940	05, 3032	28194006, 30	328194007	7,		
				Blai	nk	Reporting							
Parar	neter		Units	Res	ult	Limit	MD	L	Analyzed	Qı	ualifiers		
Cadmium			mg/kg		0.30 U	0.3	0	0.061	10/11/19 20:	07			
LABORATORY CO	NTROLS	SAMPLE:	1770812										
				Spike	LC	S	LCS	%	Rec				
Parar	neter		Units	Conc.	Re	sult	% Rec	Li	imits (Qualifiers			
Cadmium			mg/kg	4	19	48.4	9	9	80-120		_		
MATRIX SPIKE & N	ATRIX :	SPIKE DUPL	ICATE: 1770	813		1770814	ļ.						
				MS	MSD								
			30328194001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Paramete	r	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Cadmium		mg/kg	29.1	49	49	70.6	74.0	8	35 92	75-125	5	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project:	A4 Cadmium Exca	vation							
Pace Project No.:	30328194								
QC Batch:	365191		Analysis Meth	od:	ASTM D2974-8				
QC Batch Method:	ASTM D2974-87		Analysis Desc	ription:	Dry Weight/Per	cent Moistu	ire		
Associated Lab Sar	nples: 30328194 30328194	001, 30328194002 008, 30328194009	2, 30328194003, 30 9	328194004,	30328194005,	303281940	06, 3032	28194007,	
SAMPLE DUPLICA	TE: 1771265								
			30327295001	Dup		М	ax		
Paran	neter	Units	Result	Result	RPD	R	PD	Qualifiers	
Percent Moisture		%	43.2	37.	8	13	20		
SAMPLE DUPLICA	TE: 1771266								
			30328130001	Dup		Μ	ax		
Paran	neter	Units	Result	Result	RPD	RI	PD	Qualifiers	
Percent Moisture		%	20.6	21.	1	3	20		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project:	A4 Cadmium Exca	vation						
Pace Project No.:	30328194							
QC Batch: 365194			Analysis Meth	iod: A	ASTM D2974-87			
QC Batch Method:	ASTM D2974-87		Analysis Desc	alysis Description: Dry Weight/Percent Moisture				
Associated Lab Sar	nples: 303281940)10						
SAMPLE DUPLICA	TE: 1771267							
			30328194010	Dup		Max		
Parar	neter	Units	Result	Result	RPD	RPD	Qualifiers	
Percent Moisture		%	16.4	4.4	4 116		20 D6	
SAMPLE DUPLICA	TE: 1771268							
			30328226001	Dup		Max		
Parar	neter	Units	Result	Result	RPD	RPD	Qualifiers	
Percent Moisture		%	19.2	19.8	8 3		20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: A4 Cadmium Excavation

Pace Project No.: 30328194

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-PA Pace Analytical Services - Greensburg

ANALYTE QUALIFIERS

D6 The precision between the sample and sample duplicate exceeded laboratory control limits.

REPORT OF LABORATORY ANALYSIS

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: A4 Cadmium Excavation

Pace Project No.: 30328194

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
30328194001	A4-N-1	EPA 3050B	365071	EPA 6010C	365172
30328194002	A4-N-2	EPA 3050B	365071	EPA 6010C	365172
30328194003	A4-N-3	EPA 3050B	365071	EPA 6010C	365172
30328194004	A4-N-4	EPA 3050B	365071	EPA 6010C	365172
30328194005	A4-N-5	EPA 3050B	365071	EPA 6010C	365172
30328194006	A4-S-6	EPA 3050B	365071	EPA 6010C	365172
30328194007	A4-S-7	EPA 3050B	365071	EPA 6010C	365172
30328194008	A4-S-8	EPA 3050B	365071	EPA 6010C	365172
30328194009	A4-S-9	EPA 3050B	365071	EPA 6010C	365172
30328194010	A4-S-10	EPA 3050B	365071	EPA 6010C	365172
30328194001	A4-N-1	ASTM D2974-87	365191		
30328194002	A4-N-2	ASTM D2974-87	365191		
30328194003	A4-N-3	ASTM D2974-87	365191		
30328194004	A4-N-4	ASTM D2974-87	365191		
30328194005	A4-N-5	ASTM D2974-87	365191		
30328194006	A4-S-6	ASTM D2974-87	365191		
30328194007	A4-S-7	ASTM D2974-87	365191		
30328194008	A4-S-8	ASTM D2974-87	365191		
30328194009	A4-S-9	ASTM D2974-87	365191		
30328194010	A4-S-10	ASTM D2974-87	365194		

REPORT OF LABORATORY ANALYSIS

	Section B Required Project Info
Pace Analytical"	ion A ima Clant Information:

L	Pace Analytical												I				1		ſ	
Sectio	N N N N N N N N N N N N N N N N N N N	Section B Demised British Information:	Sect	ion C a Informati	ü								ā.	ä	7	Ъ	64	-		
	d Clert Intomation: w- Exutine Analytice Group	Report To: James Calenda	Atter	tion:	aura Sa	rgent														
	19. Ellyllocutations Crook	Copy To:	E CO	amy Name	Envir	Analyti	20 Dig	l _₽						補助						
			Addr	1 :358	650 Des Per	The Road,	suite 303	St. Louis,	MO 6313		NPDE	L ø	GRO	MON	ATER		RINKING	WATER		
	Spartows Forty, ML 212.13		Pace	Quote						┢	UST	L	RCRA			b L	HER			
		PAC-27-14	Refe	Project	amanth	a Bavur					in the second				199 199	S. 9. 5	10.00	24.3	1 E & 2	
Phone:	314-620-3056 Fac	MARINA HACADINON Excar	45 Tron Manu	ger: Pmfila #									2	٥						
Reque	tiad Due DeterTAT Stanckard	Project Number:						18 B												
			ŀ							R. HARRIN	a national sector	ner ner te ska	10.7.25			100 00 00 100 00 00 100 00 00				
	Section D Valid Matrix C	CODE 2 2 2 COLLECTED			heserval	ives							Ĩ	(Ŋ		
	DENUGVIE WATER WATER WATER PROULCT BOLEGLD	P P P P P P P P P P P P P P P P P P P	S OFFECLION							<u>)</u>	A0747 10 A8817\mu	AS106	- woju	B) AFGON	(N/A) et					
	SAMPLE ID WFE (A-Z, 0-9/,-) OTHER Semple IDs MUST BE UNIQUE TRAVE	LAPE (G= CODE (we	D TA 9M3T STA 9M3T SAUNATUC	рэлэ		foi *(91 919 1	5320D	89108	12/09/57	ArT4Tiv imontOine	(ebiney) Canider	UP OT	Grease/9	iholdO lau					
# WBJ		XIRTAM BAPPLE - FE FE FE FE FE FE FE	¥OLCC 2∀Wbre ₩	H ³ SO4	N [®] OH HCI HNO [®]	Os2sBN Nethen	IBW IO	8/00/18	2049	S\ORO AT∃M	Mercur) IstoT R/R/R	<u>মণ</u>	ons IIO bns IiO	ibisəA	Pace	Project 1	to./Lal	6 I.D.	
Ľ	AL 1/2 A			×				- 19 K.					স			ğ		_		_
7	C -N-74	SL C MA INS -	1	×			П	ļ					~	-	\exists	de D				
	44-N-8	St C Votalito -	+ 	×						+			파	+				-		_
14	A4-N/-4	54 C 106 1115		×			1 <u>0</u> 39.	37997		+		╡	<u>,</u>	+	1	J 2K		_		_
•	A4N-5	SUC 143120	_	×						╪	+	╈	21,		1			╀		-
*	A4-5-6	54 C 10/2		× '		+	Ţ	- Ar	╀	╞		╡	平	╇	Î			-		-
*	A4-5-7	54 C. 10/3/138 -		~						╪	╧	╞	4	┢						-
9	44-5-8	24 C. 10/ 1135 -		<u>x</u> 7	+				_	╀			<u> </u>	+		000		╞		
	44-5-4	X C 100 1140 -		د 4			24) NB			┢			P	$\left\{ \begin{array}{c} \\ \end{array} \right\}$	Ē	þ				
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1																		+		
							<u>_</u>				-	- 4		14		d NVS	LE COND	NOI SINOI		_
	CONDUCTORNAL CONDUCTION CONTRACTOR CONTRACTOR	NOIL CONTRACT SOUTH OF THE STATE OF THE STAT) (ا					2		÷ c			F			╞		
Dat	a Package Required? (Y/N):				З¥	107	Ţ [۶Į				Ī			+	>				1
Dat	a Validation Required? (Y/N):	CNM & MAGE N	2)41/A 5	Q/:2	Ì		H	Ś			5	0	NOV.	10	5					1
년 년 년	ta package is required, attach data package klist.	RDS (177 - 100	677	332	5	\leq		<u>ک</u>	5		20		332(<u>-</u>	Ω,	>-	2		\	
Pa	JO#: 30328194	SKUPPLET NAM	EVAND: SKOW	AURÉ:											0.1	(N/ uop	belse5 (N/Y)		Intact ()	
ge 21 c		PRINT Name of S SKCNATURE of S	XAMPLER: (Refe		ST 2	7	23	TE SIG			120	49		ni qmeT	eviece Y) eci	Cooler Coster		seiqme2 //Y)	
of 22	1911 - 1119 1911 - 11911 - 119 10328194			\mathbf{h}	\mathbf{P}								-		- £		ZOREV.OG,	2-Feb-2	60	1
	كمعموال متركم ومعقد وسيغ ومرور مساماته والمارا والراجع المارية والمعاولات المعاورات	is sign to do not serve and avraging to light mande of	1 5%, ner mour	for RIV HINLE		Number	É													

٦

Pittsburgh La	b Sample Condit	ion l	Jpon	Red	ceipt			
Pace Analytical'	Client Name:	Er	vi/	Ac	alytics	Project #	30328	194
Courier: 🗌 Fed Ex 🗌	UPS USPS Client	⊡	ommei	cial	Pace Other		Label 🕅	
Tracking #:			-			LIMS	Login 🖌	
Custody Seal on Cooler	/Box Present: 🔲 yes	Én	0 [,]	Seals	intact: 🗌 yes 🗹]no		
Thermometer Used	<u></u>	Туре	of lce:	Wet) Blue None			
Cooler Temperature	Observed Temp	<u>3</u>	° C	Corre	ection Factor:	°C Final Tem	p <u>: 4.3</u> • ℃	
Temp should be above freez	ring to 6°C				Internet Latt	Data and Initial	a of norohin hyperticity and	1
• •			1		pri paper Lou	contents:	loson examining	
Comments:		Yes	NO	N/A			· / 、	
Chain of Custody Presen	<u>t:</u>	4			1.	···· · · ······ ······················	· · · · · · · · · · · · · · · · · · ·	
Chain of Custody Filled C)ut:	1			2.			
Chain of Custody Relingu	ished:				3.			
Sampler Name & Signatu	ire on COC:				4.	·		
Sample Labels match CC)C:	<u>/</u>			5.			l
-Includes date/time/ID	Matrix:	$\overline{7}$	<u> </u>	Γ		·		l
Samples Arrived within H	old Time:	ļ			6,	······································		i
Short Hold Time Analys	ls (<72hr remaining):		<u> </u>		7.			1
Rush Turn Around Time	Requested:	\vdash	<u> </u>		8.			
Sufficient Volume:		Ľ/			9.			i
Correct Containers Used:		\vdash			10.			1
-Pace Containers Use	d:	Ľ/						ł
Containers Intact:		<u> </u>			11.			1
Orthophosphate field filte	red				12.			
Hex Cr Aqueous sample	field filtered			-/-	13.			
Organic Samples chec	ked for dechlorination:			$\vdash /$	14.			
Filtered volume received	for Dissolved tests				15.		······································	
avaantigent 1/01 adiifar	m TOC ORC Despelies I	/ Padan			16.			
Non-aqueous matrix	in, TOO, Odo, Fhendrics, r	xauon,	/	-				
All containers meet metho	od preservation				Initial when <	Date/time of		
requirements.					completed	preservation		
· · · · · · · · · · · · · · · · · · ·				,	preservative			
Headspace in VOA Vials	(>6mm):			/	17.	17 THE		
Trip Blank Present:					18.			
Trip Blank Custody Seals	Present			1			· ·.	•
Rad Samples Screened	< 0.5 mrem/hr			1	Initial when completed:	Date:		
Client Notification/ Reso	olution:							
Person-Contacted:				Date/	Fime:	Contacted E	3y .	
Comments/ Resolution:							,	
• 								
	······································						<u></u>	
└┘ A check in this b	ox indicates that addit	ional	inform	natior	n has been stored in	ereports.		

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers) *PM review is documented electronically in LIMS. When the Project Manager closes the SRF Review schedule in LIMS. The review is in the Status section of the Workorder Edit Screen.

J:\QAQC\Master\Document Management\Sample Mgt\Sample Condition Upon Receipt Pittsburgh (C056-9 5April2019)

.

APPENDIX E

Well/Piezometer ID: A4-001-PZ

General Project Information:

Client: EAG

Site Location: Sparrows Point, MD

Parcel ID: A4

Abandonment Date: 1/5/17

Abandonment Contractor: GSI

Abandonment Method (circle appropriate):

- 1. PVC Pulled) Split / Perforated / Left-In-Place
- 2. Abandoned \leftrightarrow Grout/Bentonite Chips

Field Equipment: Oil-Water Probe

ARM Representative(s): Lisa Perrin

Well Diameter: <u>1 inch</u>

Depth to Bottom (TOC)	Final Gauging Prior to Abandonment:
Reported (historical/log): 20.03 ft	Depth to Water (TOC): Not recorded
Measured: Not recorded	Depth to NAPL (TOC): Not recorded

Please note if this abandonment is for a known NAPL delineation/monitoring area or individual NAPL screening piezometer and identify the name of the delineation area (e.g., B6-066 NAPL Area or B5-144 Screening Piezometer):

Please Note: If NAPL is identified in a piezometer, the Project Manager should be notified and the piezometer may not be abandoned unless the presence of NAPL is already known and a decision has been made to abandon the NAPL monitoring network.

Additional Comments (if any):

Transcribed from ARM field book records. Piezometer was abandoned prior to the MDE directive to gauge piezometers a final time prior to abandonment.

ARM Group Inc.

Well/Piezometer ID: A4-002-PZ

General Project Information:

Client: EAG

Site Location: Sparrows Point, MD

Parcel ID: A4

Abandonment Date: 2/7/18

Abandonment Contractor: Allied Drilling Co.

Abandonment Method (circle appropriate):

1. PVC \rightarrow Pulled / Split / Perforated / Left-In-Place

2. Abandoned \rightarrow Grout / Bentonite Chips

Field Equipment: Oil-Water Probe

ARM Representative(s): Lisa Perrin

Well Diameter: <u>1 inch</u>

Depth to Bottom (TOC)	Final Gauging Prior to Abandonment:
Reported (historical/log): 32.53 ft	Depth to Water (TOC): Not recorded
Measured: Not recorded	Depth to NAPL (TOC): Not recorded

Please note if this abandonment is for a known NAPL delineation/monitoring area or individual NAPL screening piezometer and identify the name of the delineation area (e.g., B6-066 NAPL Area or B5-144 Screening Piezometer): <u>A4-002-PZ Screening Piezometer</u>

Please Note: If NAPL is identified in a piezometer, the Project Manager should be notified and the piezometer may not be abandoned unless the presence of NAPL is already known and a decision has been made to abandon the NAPL monitoring network.

Additional Comments (if any):

Transcribed from ARM field book records. Piezometer was missing or destroyed and thus could not be abandoned.

ARM Group Inc.

Well/Piezometer ID: A4-002a-PZ

General Project Information:

Client: EAG

Site Location: Sparrows Point, MD

Parcel ID: A4

Abandonment Date: 2/7/18

Abandonment Contractor: Allied Drilling Co.

Abandonment Method (circle appropriate):

1. PVC \rightarrow Pulled / Split / Perforated / Left-In-Place

2. Abandoned \rightarrow Grout / Bentonite Chips

Field Equipment: Oil-Water Probe

ARM Representative(s): Lisa Perrin

Well Diameter: <u>1 inch</u>

Depth to Bottom (TOC)	Final Gauging Prior to Abandonment:
Reported (historical/log): 23.09 ft	Depth to Water (TOC): Not recorded
Measured: Not recorded	Depth to NAPL (TOC): Not recorded

Please note if this abandonment is for a known NAPL delineation/monitoring area or individual NAPL screening piezometer and identify the name of the delineation area (e.g., B6-066 NAPL Area or B5-144 Screening Piezometer): <u>A4-002-PZ Screening Piezometer</u>

Please Note: If NAPL is identified in a piezometer, the Project Manager should be notified and the piezometer may not be abandoned unless the presence of NAPL is already known and a decision has been made to abandon the NAPL monitoring network.

Additional Comments (if any):

Transcribed from ARM field book records. Piezometer was missing or destroyed and thus could not be abandoned.

ARM Group Inc.

Well/Piezometer ID: A4-005-PZ

General Project Information:

Client: EAG

Site Location: Sparrows Point, MD

Parcel ID: A4

Abandonment Date: 1/5/17

Abandonment Contractor: GSI

Abandonment Method (circle appropriate):

1. PVC \rightarrow Pulled / Split / Perforated / Left-In-Place

2. Abandoned \rightarrow Grout / Bentonite Chips

Field Equipment: Oil-Water Probe

ARM Representative(s): Lisa Perrin

Well Diameter: <u>1 inch</u>

Depth to Bottom (TOC)	Final Gauging Prior to Abandonment:
Reported (historical/log): 27.41 ft	Depth to Water (TOC): Not recorded
Measured: Not recorded	Depth to NAPL (TOC): Not recorded

Please note if this abandonment is for a known NAPL delineation/monitoring area or individual NAPL screening piezometer and identify the name of the delineation area (e.g., B6-066 NAPL Area or B5-144 Screening Piezometer):

Please Note: If NAPL is identified in a piezometer, the Project Manager should be notified and the piezometer may not be abandoned unless the presence of NAPL is already known and a decision has been made to abandon the NAPL monitoring network.

Additional Comments (if any):

Transcribed from ARM field book records. Piezometer was missing or destroyed and thus could not be abandoned.

ARM Group Inc.

Well/Piezometer ID: A4-007-PZ

General Project Information:

Client: EAG

Site Location: Sparrows Point, MD

Parcel ID: A4

Abandonment Date: 1/5/17

Abandonment Contractor: GSI

Abandonment Method (circle appropriate):

1. PVC \rightarrow Pulled / Split / Perforated / Left-In-Place

2. Abandoned \rightarrow Grout / Bentonite Chips

Field Equipment: Oil-Water Probe

ARM Representative(s): Lisa Perrin

Well Diameter: <u>1 inch</u>

Depth to Bottom (TOC)	Final Gauging Prior to Abandonment:
Reported (historical/log): 29.99 ft	Depth to Water (TOC): Not recorded
Measured: Not recorded	Depth to NAPL (TOC): Not recorded

Please note if this abandonment is for a known NAPL delineation/monitoring area or individual NAPL screening piezometer and identify the name of the delineation area (e.g., B6-066 NAPL Area or B5-144 Screening Piezometer):

Please Note: If NAPL is identified in a piezometer, the Project Manager should be notified and the piezometer may not be abandoned unless the presence of NAPL is already known and a decision has been made to abandon the NAPL monitoring network.

Additional Comments (if any):

Transcribed from ARM field book records. Piezometer was missing or destroyed and thus could not be abandoned.

ARM Group Inc.

Well/Piezometer ID: A4-010-PZ

General Project Information:

Client: EAG

Site Location: Sparrows Point, MD

Parcel ID: A4

Abandonment Date: 1/5/17

Abandonment Contractor: GSI

Abandonment Method (circle appropriate):

1. PVC - Pulled) Split / Perforated / Left-In-Place

2. Abandoned (Grout) Bentonite Chips

Field Equipment: Oil-Water Probe

ARM Representative(s): Lisa Perrin

Well Diameter: <u>1 inch</u>

Depth to Bottom (TOC)	Final Gauging Prior to Abandonment:
Reported (historical/log): 29.84 ft	Depth to Water (TOC): Not recorded
Measured: Not recorded	Depth to NAPL (TOC): Not recorded

Please note if this abandonment is for a known NAPL delineation/monitoring area or individual NAPL screening piezometer and identify the name of the delineation area (e.g., B6-066 NAPL Area or B5-144 Screening Piezometer): _____

Please Note: If NAPL is identified in a piezometer, the Project Manager should be notified and the piezometer may not be abandoned unless the presence of NAPL is already known and a decision has been made to abandon the NAPL monitoring network.

Additional Comments (if any):

Transcribed from ARM field book records. Piezometer was abandoned prior to the MDE directive to gauge piezometers a final time prior to abandonment.

Well/Piezometer ID: A4-012-PZ

General Project Information:

Client: EAG

Site Location: Sparrows Point, MD

Parcel ID: A4

Abandonment Date: 1/5/17

Abandonment Contractor: GSI

Abandonment Method (circle appropriate):

1. PVC \rightarrow Pulled / Split / Perforated / Left-In-Place

2. Abandoned \rightarrow Grout / Bentonite Chips

Field Equipment: Oil-Water Probe

ARM Representative(s): Lisa Perrin

Well Diameter: <u>1 inch</u>

Depth to Bottom (TOC)	Final Gauging Prior to Abandonment:
Reported (historical/log): 27.64 ft	Depth to Water (TOC): Not recorded
Measured: Not recorded	Depth to NAPL (TOC): Not recorded

Please note if this abandonment is for a known NAPL delineation/monitoring area or individual NAPL screening piezometer and identify the name of the delineation area (e.g., B6-066 NAPL Area or B5-144 Screening Piezometer):

Please Note: If NAPL is identified in a piezometer, the Project Manager should be notified and the piezometer may not be abandoned unless the presence of NAPL is already known and a decision has been made to abandon the NAPL monitoring network.

Additional Comments (if any):

Transcribed from ARM field book records. Piezometer was missing or destroyed and thus could not be abandoned.

ARM Group Inc.

Well/Piezometer ID: A4-013-PZ

General Project Information:

Client: EAG

Site Location: Sparrows Point, MD

Parcel ID: A4

Abandonment Date: 1/6/17

Abandonment Contractor: GSI

Abandonment Method (circle appropriate):

- 1. PVC Pulled) Split / Perforated / Left-In-Place
- 2. Abandoned (Grout) Bentonite Chips

Field Equipment: Oil-Water Probe

ARM Representative(s): Lisa Perrin

Well Diameter: <u>1 inch</u>

Depth to Bottom (TOC)	Final Gauging Prior to Abandonment:
Reported (historical/log): 15.01 ft	Depth to Water (TOC): Not recorded
Measured: Not recorded	Depth to NAPL (TOC): Not recorded

Please note if this abandonment is for a known NAPL delineation/monitoring area or individual NAPL screening piezometer and identify the name of the delineation area (e.g., B6-066 NAPL Area or B5-144 Screening Piezometer): _____

Please Note: If NAPL is identified in a piezometer, the Project Manager should be notified and the piezometer may not be abandoned unless the presence of NAPL is already known and a decision has been made to abandon the NAPL monitoring network.

Additional Comments (if any):

Transcribed from ARM field book records. Piezometer was abandoned prior to the MDE directive to gauge piezometers a final time prior to abandonment.

ARM Group Inc.

Well/Piezometer ID: A4-014-PZ

General Project Information:

Client: EAG

Site Location: Sparrows Point, MD

Parcel ID: A4

Abandonment Date: 1/5/17

Abandonment Contractor: GSI

Abandonment Method (circle appropriate):

1. PVC - Pulled) Split / Perforated / Left-In-Place

2. Abandoned (Grout) Bentonite Chips

Field Equipment: Oil-Water Probe

ARM Representative(s): Lisa Perrin

Well Diameter: <u>1 inch</u>

Depth to Bottom (TOC)	Final Gauging Prior to Abandonment:
Reported (historical/log): 28.16 ft	Depth to Water (TOC): Not recorded
Measured: Not recorded	Depth to NAPL (TOC): Not recorded

Please note if this abandonment is for a known NAPL delineation/monitoring area or individual NAPL screening piezometer and identify the name of the delineation area (e.g., B6-066 NAPL Area or B5-144 Screening Piezometer): _____

Please Note: If NAPL is identified in a piezometer, the Project Manager should be notified and the piezometer may not be abandoned unless the presence of NAPL is already known and a decision has been made to abandon the NAPL monitoring network.

Additional Comments (if any):

Transcribed from ARM field book records. Piezometer was abandoned prior to the MDE directive to gauge piezometers a final time prior to abandonment.

ARM Group Inc.

Well/Piezometer ID: A4-019-PZ

General Project Information:

Client: EAG

Site Location: Sparrows Point, MD

Parcel ID: A4

Abandonment Date: 1/5/17

Abandonment Contractor: GSI

Abandonment Method (circle appropriate):

1. PVC - Pulled) Split / Perforated / Left-In-Place

2. Abandoned (Grout) Bentonite Chips

Field Equipment: Oil-Water Probe

ARM Representative(s): Lisa Perrin

Well Diameter: <u>1 inch</u>

Depth to Bottom (TOC)	Final Gauging Prior to Abandonment:
Reported (historical/log): 27.41 ft	Depth to Water (TOC): Not recorded
Measured: Not recorded	Depth to NAPL (TOC): Not recorded

Please note if this abandonment is for a known NAPL delineation/monitoring area or individual NAPL screening piezometer and identify the name of the delineation area (e.g., B6-066 NAPL Area or B5-144 Screening Piezometer): _____

Please Note: If NAPL is identified in a piezometer, the Project Manager should be notified and the piezometer may not be abandoned unless the presence of NAPL is already known and a decision has been made to abandon the NAPL monitoring network.

Additional Comments (if any):

Transcribed from ARM field book records. Piezometer was abandoned prior to the MDE directive to gauge piezometers a final time prior to abandonment.

ARM Group Inc.

APPENDIX F

GEO-TECHNOLOGY ASSOCIATES, INC.

GEOTECHNICAL AND ENVIRONMENTAL CONSULTANTS

A Practicing Geoprofessional Business Association Member Firm

July 19, 2017

Tradepoint Atlantic 1600 Sparrows Point Boulevard Baltimore, Maryland 21219

Attn: Mr. John M. Martin, III, P.E.

Re: Cold Mill/Access World Pavement/Cap Summary, Revised Baltimore County, Maryland

Dear Mr. Martin:

Pursuant to your request, Geo-Technology Associates, Inc. (GTA) has prepared a summary of the pavement sections, or Cap, for the referenced project. The scope of our services during construction of the pavement sections consisted of observing and testing the prepared subgrades, in-place density testing of the asphalt pavements, and sampling of the concrete for rigid pavements. Our services were provided during the period of January 20 through May 31, 2017. Plans referenced during the work consisted of civil and structural drawings prepared by Morris & Ritchie Associates, Inc. (MRA). Civil plans prepared by KCI for the SHA work were also referenced.

GTA observed proof roll tests of the prepared aggregate base course with a fully loaded tandem axel dump truck prior to placement of the asphalt base course and concrete paving. The prepared subgrades were observed to be stable. The aggregate base course measured a minimum of 3 inches for the on-site asphalt pavement, 6 inches for the on-site rigid pavement, and 12-inches for the access road to Bethlehem Boulevard.

In-place density test results for the asphalt base and surface courses indicated adequate compaction was achieved. The individual in-place density test results were summarized in our field reports that were previously transmitted to representatives of Tradepoint Atlantic and the ARM Group. Compressive strength test results for the concrete paving generally met or exceeded the specified compressive strength indicated on the structural plans prepared by MRA. The individual compressive strength test results were forwarded under separate cover.

Based on our measurements of the cores cut by the contractor, the completed bituminous concrete cap for the on-site areas measured a minimum of 6 inches. The paving section constructed for the access road to Bethlehem Boulevard measured a minimum of 10 inches. Based on our measurements of the form work for the concrete paving, the areas capped with concrete have a minimum thickness of 9 inches.

3445-A Box Hill Corporate Center Drive, Abingdon, MD 21009 (410) 515-9446 Fax: (410) 515-4895

♦ Abingdon, MD ♦ Baltimore, MD ♦ Laurel, MD ♦ Frederick, MD ♦ Waldorf, MD ♦ Sterling, VA ♦ Fredericksburg, VA ♦ Malvern, OH
♦ Somerset, NJ ♦ NYC Metro ♦ New Castle, DE ♦ Georgetown, DE ♦ York, PA ♦ Quakertown, PA ♦ Charlotte, NC ♦ Raleigh, NC

Tradepoint Atlantic Re: *Cold Mill/Access World, Pavement/Cap Summary* July 19, 2017 Page 2

Based on our observations and testing, it is GTA's professional opinion that the referenced pavement sections, or Cap, were constructed in general accordance with the referenced plans.

This Report has been prepared for the exclusive use of Tradepoint Atlantic, pursuant to the agreement between GTA and Tradepoint Atlantic, dated October 11, 2016, and in accordance with generally accepted engineering practices. All terms and conditions set forth in the agreement are incorporated herein. No warranty, express or implied, is made herein. Use and reproduction of this Report by any other person is unauthorized.

GTA appreciates the opportunity to have been of assistance to you on this project. Should you have any questions or require any additional information, please contact our office at (410) 515-9446.

Sincerely, GEO-TECHNOLOGY ASSOCIATES, INC.

Christopher M. Standish

Christopher M. Standish Senior Project Manager

Thomas M. Wirth, P.E.

Vice President

Professional Certification. I hereby certify that these documents were prepared or approved by me, and that I am a duly licensed professional engineer under the laws of the State of Maryland. License No.: 33973, Expiration Date: 06/14/2019. TMW

CMS/TMW/cds 31162082

\\PSMC-DATA\gta\Shared\Geo\2016 Projects\31162082 Cold Mill Bldg Rehabilitation\Docs\31162082 Cold Mill-Access World Pave Summ Revised.doc

CRRGP F KZ 'I

11

	2,482,92	20 S.F. / 57.00+	-/- AC.
DISTURBANCE SHOW	N: 6	5,776 S.F. / 1.5	51 AC.
LY STABILIZED:		0 S.F. / 0.0	00 AC.
LDGS & PAVED AREAS)	: 6	5,776 S.F. / 1.5	51 AC.
NOT INCLUDING TOPS	SOIL):	2,7	28 CY
		7	01 CY
			N/A
S SHOWN HEREON ARE F	OR INFOR	MATION PURPOS	SES
NTEES OF ACCURACY OF	QUANTITI	ES OR BALANCE	

	PROPOSED		EXISTING
	PROPERTY LINE		PROPERTY
	RIGHT OF WAY		RIGHT OF V
	CL OF ROAD/STATIONS		CL OF ROA
	EDGE OF PAVING		EDGE OF P
	CURB		CURB
xxx	8' C/L FENCE		BUILDING
	BUILDING SETBACK		1' CONTOUI
	EASEMENT		5' CONTOU
	1' CONTOUR	· _ · · · · · · _ · · · · · _ · · · · · · · · · _ · _ · · _ · _ · · _ · _ · · _ · · _ · · _ · · _ · · _ · · · · _ · _ · _ · · _ · _ · · _ · _ · _ · _ · _ · _ · _ · _ · _ · _ · · · _	WETLANDS
2	2' CONTOUR		25' WETLAN
	5' CONTOUR		WATERS OF
	STORM DRAIN		STREAM BU
	WATER		STREAM
	SANITARY SEWER	SDSD	STORM DRA
	CLEARING LIMIT		WATER
			SANITARY S
	BUILDING	G G G	GAS MAIN
	CONCRETE	OHE OHE	ELECTRIC-C
			ELECTRIC-L
	FAVEMENT		WOODS
TE: ALL GATES ARE TO BE MANUAL.		//////	FENCE
		+++++++++++++++++++++++++++++++++++++++	RAILROAD

APPENDIX H

New Cold Mill Redevelopment Area A: Parcel A4 Sparrows Point, Maryland

010417-1: View to the south of minor utility trenching on the western side of the parcel.

010617-1: Completed pavement on western side of NCMC building..

010617-2: Trenching to tie into existing utility lines on western side of existing NCMC building.

010617-3: Trenching to tie into existing utility lines on western side of existing NCMC building.

011317-1: Backfilled utility trenches on western side of NCMC building.

011317-2: Truck well construction on south side of NCMC building.

011317-3: Truck well construction on south side of NCMC building.

011317-4: Truck well construction on south side of NCMC building.

011317-5: Foundation work for truck well construction on south side of NCMC building.

011917-1: Concrete foundation for truck well construction on south side of NCMC building.

030817-1: Truck well construction on south side of NCMC building.

041317-1: Truck well construction on east side of NCMC building.

041317-2: Truck well construction on east side of NCMC building.

042017-1: Truck well construction on north side of NCMC building.

042017-3: Utility work and backfilling for truck well construction on east side of NCMC building.

042717-2: Silt fence and parking area subgrade preparation north of NCMC building.

042717-3: Truck well construction on north side of NCMC building.

042717-4: Foundation work to avoid existing utility pipe for truck well on north side of NCMC building.

"

APPENDIX I

"

"

"

"

۱

..

SHEET INDEX

C10.0	COVER SHEET
C10.1	TYPICAL SECTIONS
C10.2	SITE PLAN
C10.3	GRADING PLAN
C10.4	UTILITY PLAN
C10.5	PAVEMENT MARKING PLAN
C10.6	STORMWATER MANAGEMENT PLAN
C10.7	EROSION AND SEDIMENT CONTROL PLAN
C10.8	EROSION AND SEDIMENT CONTROL NOTES
C10.9	EROSION AND SEDIMENT CONTROL NOTES
C10.10	CROSS SECTIONS
C10.11	CROSS SECTIONS
C10.12	CROSS SECTIONS

LEGEND

PROPOSED

EXISTING

— х
N ₄
6 -
F -
LOD
SF -
Uc Uu

 PROP. LEASE LINE
 PROP. SECURITY FENCE
 PROP. EDGE OF ROAD
PROP. FIRE HYDRANT
 PROP. WATER LINE
 PROP. STORM DRAIN
 PROP. SANITARY SEWER
 PROP. GAS LINE
 PROP. ELECTRIC LINE
 LIMIT OF DISTURBANCE
 SILT FENCE
 PROP. EDGE OF ROAD
PROP. STORM DRAIN
PROP. ASPHALT PAVING
 SOILS LINE

936 Ridgebrook Road Sparks, Maryland 21152 Telephone: (410) 316-7800 TECHNOLOGIES Fax: (410) 316-7818

SHA ACCESS PERMIT DRAWINGS FOR NEW ACCESS WORLD ENTRANCE SPARROWS POINT, MARYLAND

VICINITY MAP SCALE: 1" = 1000'

THE FOLLOWING STANDARDS (CONSTRUCTION AND TEMPORARY TRAFFIC CONTROL) ARE REQUIRED FOR THIS PROJECT:

- a. MD-104.02-02 SHOULDER WORK / 2-LANE, 2-WAY EQUAL/LESS THAN 40 MPH b. MD-104.02-04 - LANE SHIFT RIGHT OR LEFT SIDE/2-LANE, 2-WAY EQUAL/LESS THAN 40 MPH/15 MIN-12 HRS. OR DAYTIME ONLY
- c. MD-104.04-10 FLAGGING OPERATION / 2 LANE, 2-WAY EQUAL/LESS THAN 40 MPH
- d. MD-104.06-16 PAVEMENT EDGE DROP-OFF 2.5 INCHES OR LESS (BETWEEN TRAFFIC LANES AND SHOULDER)

PRC CER PR LAW LICE 8/19

SITE DATA

SITE ADDRESS: 2001 WHARF ROAD BALTIMORE, MD 21219

2. ELECTION DISTRICT: 15

COUNCILMANIC DISTRICT: 7

CENSUS TRACT: 452200

32617/00144 DEED REF

PARCEL: 318 GRID: 14

7. PROPERTY TAX ACCOUNT NO. 1502024000

8. PROPERTY OWNER: SPARROWS POINT TERMINAL, LLC 1600 SPARROWS POINT BLVD SPARROWS POINT, MD 21219

9. TOTAL SITE AREA: 62,291 SQ. FT OR 1.43 AC.±

10. SITE IS LOCATED WITHIN THE BALTIMORE HARBOR WATERSHED DRAINAGE AREA.

11. ZONING: MH/M (MANUFACTURING HEAVY/INDUSTIRAL MAJOR) 2-5 N/A

12. THIS SITE IS SERVED BY PRIVATELY OWNED SEWER AND WATER SYSTEMS

	NEW ACCESS SHA ACCES	WORL	D ENTRANCE DRAWINGS
DFESSIONAL CERTIFICATION. I HEREBY	SCALE	_ DATE	10-24-2016
DESSIONAL CERTIFICATION. THEREBY RTIFY THAT THESE DOCUMENTS WERE EPARED OR APPROVED BY ME, AND AT I AM A DULY LICENSED DESSIONAL ENGINEER UNDER THE VS OF THE STATE OF MARYLAND, ENSE NO. 23381 EXPIRATION DATE: D/18.	DESIGNED BY CMC/AC DRAWN BY KGD CHECKED BY SRR	<u></u>	C10.0
	DRAWING NO. <u>1</u> OF <u>13</u>		

		ENTRAN	CE ROAD STA	KEOUT										
	NO.	DESC.	BASELINE	STATION	OFFSET									
	1	PC	BETH BLVD.	2648+37.98	29.00' RT.									
	2	PT	ENTR RD.	400+74.00	15.00' RT.									
	3	PC	ENTR RD.	400+74.00	15.00' LT.									
	4	PT	BETH BLVD.	2649+58.04	29.00' RT.									
	5	PC	ENTR RD.	401+43.13	15.00' RT.									
	6	PT	ENTR RD.	401+59.68	59.68' RT.									
	7	POT/LOW	ENTR RD.	401+88.22	71.98' RT.									
	8	POT/LOW	ENTR RD.	402+18.21	71.77' RT.									
	9	PC	ENTR RD.	402+18.13	60.32' RT.									
	10	PT	ENTR RD.	402+63.13	15.00' RT.									
	 	O	(· · · · · · · · · · · · · · · · · · ·	O	0								· · · · · · · · · · · · · · · · · · ·
		EX. BETHLEHEM ECTOR - POSTE	BOULEVARD(MD D SPEED LIMIT 4	158) 0 MPH) N 572. 0 MPH) E 1,45 STA. 2 BETH STA. 4 ENTR.	,775.8645 88,929.3516 2648.95.58 LEHEM BLVD. 400+00.00 ANCE ROAD		A		W		₩ <u>₩</u> ₩	W W	- ∲ ₩ 	
EHEM ²⁶⁴⁶⁺⁰⁰ BLVD.	2647+00) <= _	264	8+00		2649+ 0 0		SAW CUT	2650+00	4		2651+00	CCEL LANE	-
		//#///	4'CURB I	BANSITION				//_ A* C		SITION /	Z///	VIIII	1111	77
			TONOSE	DOWN					NOSE DOW					
£27 ¹	×××××		******	XXXXXXXXX		***				x / / / / X X X				$\underline{\times}$
	Q	<u> </u>	X TYPE A' C CURB & G MD STD. 6	A C C C C C C C C C C C C C C C C C C C		30' +00+100 + 100	-1 45' R 3	2649+57.95, 24.00' RT.	SIGN (30"x3	18' ROP. 4' SHC 0")	2650+76.22, 24.00' RT.	ACCEL LANE N ACCEL LANE TAPER		2651+76.26 28 00' n+ 00
	PER LIBER 3788 FOLIO 39		LIMIT O SAW CI	4' CURB TRANSI TO NOSE DOWN F JT JT T	5 ITION 8 45'	,000 00	2 4' CU 2 TO N F E	RB TRANSIT OSE DOWN ROPOSED NTRANCE F	TION ROAD		STA.	STEEL TOWER LINE E PER LIBER 3788 FC	ASEMENT LIO 396	STA
	_L KL	J			\times									

N 572,477.2782 <u>E 1,458,960.4045</u> STA. 403+00.00 ENTRANCE ROAD

RD

MILL F L ROAD)

PIPE (LOCAI

Ш

LIMIT OF WORK

NOTES:

- 1. FOR PROPOSED STORM DRAINAGE, SEE DRAWING C10.3.
- 2. ALL WORK ALONG BETHLEHEM BOULEVARD (MD 158) SHALL BE DONE IN ACCORDANCE WITH MARYLAND STATE HIGHWAY ADMINISTRATION STANDARDS.

LIMIT OF WORK STA. 402+81.09

- 3. FOR B DATA FOR FOR BETHLEHEM BLVD. REFER TO "CONSTRUCTION OF NORTH APPROACH TO FRANCIS SCOTT KEY BRIDGE, I-695, FROM BEAR CREEK TO NORTH OF MD. RTE. 151", MDTA CONTRACT NO. KB 421-000-006, DWG. NO. GL-1.
- 4. THE PROPOSED IMPROVEMENTS AT THE WEST LIMIT OF WORK TIE INTO THE IMPROVEMENTS BY OTHERS UNDER ACCESS PERMIT NO. 14-AP-BA-025-15.

 n

 n

 n

 n

 n

 n

 n

 n

 n

 n

 n

 n

 n

 n

 n

 n

 n

 n

 n

 n

 n

 n

 n

 n

 n

 n

 n

 n

 n

 n

 n

 n

 n

 n

 n

 n

 n

 n

 n

 n

 n

 n

 n

 n

 n

 n

 n

 n

 n

 n

 n

 n

 n

 n

 n

 n

 <td

"

APPENDIX J

"

"

"

"

۱

..

Certificate of Analysis

Jenkins Environmental, Inc. 8600 LaSalle Road York Building, Suite 509 Towson, MD 21286

Date Sampled:	04/05/17 10:08
Date Received:	04/06/17 9:49
Date Issued:	04/13/17

17040601

SDG Number:

Project:Stockpiles - MCMSite Location:Sparrows Point, MDProject Number:2017-028

Field Sample ID: 017-028-381	Matrix: Solid				Lab ID: 17040601-01				
	Result	Unit	LLQ	Method	Prepared	Analyzed	Init.		
Percent Solids									
Percent Solids	93	%		SM2540G	04/06/17	04/07/17 14:58	MEL		
Polychlorinated Biphenyls									
Aroclor 1016	ND	mg/kg	0.054	EPA 8082	04/12/17	04/12/17 15:38	AC		
Aroclor 1221	ND	mg/kg	0.054	EPA 8082	04/12/17	04/12/17 15:38	AC		
Aroclor 1232	ND	mg/kg	0.054	EPA 8082	04/12/17	04/12/17 15:38	AC		
Aroclor 1242	ND	mg/kg	0.054	EPA 8082	04/12/17	04/12/17 15:38	AC		
Aroclor 1248	ND	mg/kg	0.054	EPA 8082	04/12/17	04/12/17 15:38	AC		
Aroclor 1254	ND	mg/kg	0.054	EPA 8082	04/12/17	04/12/17 15:38	AC		
Aroclor 1260	ND	mg/kg	0.054	EPA 8082	04/12/17	04/12/17 15:38	AC		
Target Compound List - SEMIVOLATILES									
Phenol	ND	ug/kg	100	EPA 8270C	04/05/17	04/08/17 2:06	GFH		
Bis (2-chloroethyl) ether	ND	ug/kg	100	EPA 8270C	04/05/17	04/08/17 2:06	GFH		
2-Chlorophenol	ND	ug/kg	100	EPA 8270C	04/05/17	04/08/17 2:06	GFH		
2-Methylphenol	ND	ug/kg	100	EPA 8270C	04/05/17	04/08/17 2:06	GFH		
Bis (2-chloroisopropyl) ether	ND	ug/kg	100	EPA 8270C	04/05/17	04/08/17 2:06	GFH		
Acetophenone	ND	ug/kg	100	EPA 8270C	04/05/17	04/08/17 2:06	GFH		
4-Methylphenol	ND	ug/kg	100	EPA 8270C	04/05/17	04/08/17 2:06	GFH		
N-Nitroso-di-n-propylamine	ND	ug/kg	100	EPA 8270C	04/05/17	04/08/17 2:06	GFH		
Hexachloroethane	ND	ug/kg	100	EPA 8270C	04/05/17	04/08/17 2:06	GFH		
Nitrobenzene	ND	ug/kg	100	EPA 8270C	04/05/17	04/08/17 2:06	GFH		
Isophorone	ND	ug/kg	100	EPA 8270C	04/05/17	04/08/17 2:06	GFH		
2-Nitrophenol	ND	ug/kg	100	EPA 8270C	04/05/17	04/08/17 2:06	GFH		
2,4-Dimethylphenol	ND	ug/kg	100	EPA 8270C	04/05/17	04/08/17 2:06	GFH		
Bis (2-chloroethoxy) methane	ND	ug/kg	100	EPA 8270C	04/05/17	04/08/17 2:06	GFH		
2,4-Dichlorophenol	ND	ug/kg	100	EPA 8270C	04/05/17	04/08/17 2:06	GFH		
Naphthalene	ND	ug/kg	100	EPA 8270C	04/05/17	04/08/17 2:06	GFH		
4-Chloroaniline	ND	ug/kg	100	EPA 8270C	04/05/17	04/08/17 2:06	GFH		
Hexachlorobutadiene	ND	ug/kg	100	EPA 8270C	04/05/17	04/08/17 2:06	GFH		
Caprolactam	ND	ug/kg	100	EPA 8270C	04/05/17	04/08/17 2:06	GFH		
4-Chloro-3-methylphenol	ND	ug/kg	100	EPA 8270C	04/05/17	04/08/17 2:06	GFH		
2-Methylnaphthalene	ND	ug/kg	100	EPA 8270C	04/05/17	04/08/17 2:06	GFH		
Hexachlorocyclopentadiene	ND	ug/kg	100	EPA 8270C	04/05/17	04/08/17 2:06	GFH		
2,4,6-Trichlorophenol	ND	ug/kg	100	EPA 8270C	04/05/17	04/08/17 2:06	GFH		
2,4,5-Trichlorophenol	ND	ug/kg	260	EPA 8270C	04/05/17	04/08/17 2:06	GFH		
1,1-Biphenyl	ND	ug/kg	100	EPA 8270C	04/05/17	04/08/17 2:06	GFH		
2-Chloronaphthalene	ND	ug/kg	100	EPA 8270C	04/05/17	04/08/17 2:06	GFH		
2-Nitroaniline	ND	ug/kg	260	EPA 8270C	04/05/17	04/08/17 2:06	GFH		
Dimethyl phthalate	ND	ug/kg	100	EPA 8270C	04/05/17	04/08/17 2:06	GFH		
2,6-Dinitrotoluene	ND	ug/kg	100	EPA 8270C	04/05/17	04/08/17 2:06	GFH		

Page 1 of 30

Certificate of Analysis

Jenkins Environmental, Inc. 8600 LaSalle Road York Building, Suite 509 Towson, MD 21286

Project:	Stockpiles - MCM
Site Location:	Sparrows Point, MD
Project Number:	2017-028

Matrix: Solid Lab ID: 17040601-01 Field Sample ID: 017-028-381 Unit LLQ Method Prepared Analyzed Init. Result Target Compound List - SEMIVOLATILES 04/05/17 04/08/17 2:06 GFH ND 100 EPA 8270C Acenaphthylene ug/kg 04/08/17 2:06 GFH 04/05/17 ND 260 EPA 8270C 3-Nitroaniline ug/kg GFH ND 100 EPA 8270C 04/05/17 04/08/17 2:06 Acenaphthene ug/kg ND 260 EPA 8270C 04/05/17 04/08/17 2:06 GEH 2,4-Dinitrophenol ug/kg 04/08/17 2:06 GEH 4-Nitrophenol ND ug/kg 260 EPA 8270C 04/05/17 Dibenzofuran ND ug/kg 100 EPA 8270C 04/05/17 04/08/17 2:06 GFH 2,4-Dinitrotoluene ND 100 EPA 8270C 04/05/17 04/08/17 2:06 GFH ug/kg Diethyl phthalate ND 100 EPA 8270C 04/05/17 04/08/17 2:06 GFH ug/kg ND ug/kg 100 EPA 8270C 04/05/17 04/08/17 2:06 GFH Fluorene ND 100 EPA 8270C 04/05/17 04/08/17 2:06 GFH 4-Chlorophenyl phenyl ether ug/kg 04/05/17 04/08/17 2:06 GFH ND 260 EPA 8270C 4-Nitroaniline ug/kg 04/05/17 04/08/17 2:06 GFH ND 230 EPA 8270C 4,6-Dinitro-2-methylphenol ug/kg 04/05/17 04/08/17 2:06 GFH ND 100 EPA 8270C N-Nitrosodiphenylamine ug/kg 04/05/17 04/08/17 2:06 GFH ND 100 EPA 8270C 4-Bromophenyl phenyl ether ug/kg 04/08/17 2:06 ND 100 EPA 8270C 04/05/17 GFH Hexachlorobenzene ug/kg 04/05/17 04/08/17 2:06 GFH ND 100 EPA 8270C Atrazine ug/kg 260 EPA 8270C 04/05/17 04/08/17 2:06 GFH Pentachlorophenol ND ug/kg ND 100 EPA 8270C 04/05/17 04/08/17 2:06 GFH Phenanthrene ug/kg 04/08/17 2:06 GEH Anthracene ND ug/kg 100 EPA 8270C 04/05/17 EPA 8270C 04/05/17 04/08/17 2:06 GFH Carbazole ND ug/kg 100 EPA 8270C 04/05/17 04/08/17 2:06 GFH ND ug/kg 100 Di-n-butyl phthalate GFH ND ug/kg 100 EPA 8270C 04/05/17 04/08/17 2:06 Fluoranthene ND ug/kg 100 EPA 8270C 04/05/17 04/08/17 2:06 GFH Pyrene ND EPA 8270C 04/05/17 04/08/17 2:06 GFH 100 Butyl benzyl phthalate ug/kg 04/05/17 04/08/17 2:06 GFH ND 100 EPA 8270C 3.3-Dichlorobenzidine ug/kg 04/05/17 04/08/17 2:06 GFH ND ug/kg 100 EPA 8270C Benzo[a]anthracene 04/05/17 04/08/17 2:06 GFH EPA 8270C ND 100 Chrysene ug/kg GFH ND 100 EPA 8270C 04/05/17 04/08/17 2:06 Bis (2-ethylhexyl) phthalate ug/kg ND 100 EPA 8270C 04/05/17 04/08/17 2:06 GFH Di-n-octyl phthalate ug/kg GFH EPA 8270C 04/05/17 04/08/17 2:06 Benzo[b]fluoranthene ND ug/kg 100 100 EPA 8270C 04/05/17 04/08/17 2:06 GFH Benzo[k]fluoranthene ND ug/kg EPA 8270C 04/05/17 04/08/17 2:06 GFH ND 100 Benzo[a]pyrene ug/kg 04/05/17 04/08/17 2:06 GFH EPA 8270C Indeno[1,2,3-cd]pyrene ND ug/kg 100 EPA 8270C 04/05/17 04/08/17 2:06 GFH Dibenz[a,h]anthracene ND ug/kg 100 04/05/17 04/08/17 2:06 GFH

EPA 8270C ND ug/kg 100 Benzo[g,h,i]perylene Target Compound List - VOLATILES ND ug/kg 5 EPA 8260B 04/07/17 Dichlorodifluoromethane ND 5 EPA 8260B 04/07/17 ug/kg Chloromethane 04/07/17 ND 5 EPA 8260B Vinyl chloride ug/kg

Page 2 of 30

Date Sampled:	04/05/17 10:08
Date Received:	04/06/17 9:49
Date Issued:	04/13/17

SDG Number:

17040601

04/07/17 16:18 GFH

04/07/17 16:18 GFH

GEH

04/07/17 16:18

Certificate of Analysis

Date Sampled:

Date Received:

SDG Number:

Date Issued:

04/05/17 10:08

17040601

04/06/17 9:49

04/13/17

Jenkins Environmental, Inc. 8600 LaSalle Road York Building, Suite 509 Towson, MD 21286

Project:	Stockpiles - MCM
Site Location:	Sparrows Point, MD
Project Number:	2017-028

Field Sample ID: 017-028-381		Mat	rix: Solid		La	ib ID: 17040	601-01	
	Result	Unit	LLQ	Method	Prepared	Analyzed	Init.	
Target Compound List - VOLATILES								
Bromomethane	ND	ug/kg	5	EPA 8260B	04/07/17	04/07/17 16:18	GFH	
Chloroethane	ND	ug/kg	5	EPA 8260B	04/07/17	04/07/17 16:18	GFH	
Trichlorofluoromethane	ND	ug/kg	5	EPA 8260B	04/07/17	04/07/17 16:18	GFH	
1,1-Dichloroethene	ND	ug/kg	5	EPA 8260B	04/07/17	04/07/17 16:18	GFH	
1,1,2-Trichlorotrifluoroethane	ND	ug/kg	5	EPA 8260B	04/07/17	04/07/17 16:18	GFH	
Acetone	ND	ug/kg	53	EPA 8260B	04/07/17	04/07/17 16:18	GFH	
Carbon disulfide	ND	ug/kg	11	EPA 8260B	04/07/17	04/07/17 16:18	GFH	
Methyl acetate	ND	ug/kg	26	EPA 8260B	04/07/17	04/07/17 16:18	GFH	
Methylene chloride	ND	ug/kg	26	EPA 8260B	04/07/17	04/07/17 16:18	GFH	
trans-1,2-Dichloroethene	ND	ug/kg	5	EPA 8260B	04/07/17	04/07/17 16:18	GFH	
Methyl t-butyl ether (MTBE)	ND	ug/kg	5	EPA 8260B	04/07/17	04/07/17 16:18	GFH	
1,1-Dichloroethane	ND	ug/kg	5	EPA 8260B	04/07/17	04/07/17 16:18	GFH	
cis-1,2-Dichloroethene	ND	ug/kg	5	EPA 8260B	04/07/17	04/07/17 16:18	GFH	
2-Butanone (MEK)	ND	ug/kg	53	EPA 8260B	04/07/17	04/07/17 16:18	GFH	
Chloroform	ND	ug/kg	5	EPA 8260B	04/07/17	04/07/17 16:18	GFH	
1,1,1-Trichloroethane	ND	ug/kg	5	EPA 8260B	04/07/17	04/07/17 16:18	GFH	
Cyclohexane	ND	ug/kg	5	EPA 8260B	04/07/17	04/07/17 16:18	GFH	
Carbon tetrachloride	ND	ug/kg	5	EPA 8260B	04/07/17	04/07/17 16:18	GFH	
Benzene	ND	ug/kg	5	EPA 8260B	04/07/17	04/07/17 16:18	GFH	
1,2-Dichloroethane	ND	ug/kg	5	EPA 8260B	04/07/17	04/07/17 16:18	GFH	
Trichloroethene	ND	ug/kg	5	EPA 8260B	04/07/17	04/07/17 16:18	GFH	
Methylcyclohexane	ND	ug/kg	5	EPA 8260B	04/07/17	04/07/17 16:18	GFH	
1,2-Dichloropropane	ND	ug/kg	5	EPA 8260B	04/07/17	04/07/17 16:18	GFH	
Bromodichloromethane	ND	ug/kg	5	EPA 8260B	04/07/17	04/07/17 16:18	GFH	
cis-1,3-Dichloropropene	ND	ug/kg	5	EPA 8260B	04/07/17	04/07/17 16:18	GFH	
4-Methyl-2-pentanone (MIBK)	ND	ug/kg	11	EPA 8260B	04/07/17	04/07/17 16:18	GFH	
Toluene	ND	ug/kg	5	EPA 8260B	04/07/17	04/07/17 16:18	GFH	
trans-1,3-Dichloropropene	ND	ug/kg	5	EPA 8260B	04/07/17	04/07/17 16:18	GFH	
1,1,2-Trichloroethane	ND	ug/kg	5	EPA 8260B	04/07/17	04/07/17 16:18	GFH	
Tetrachloroethene	ND	ug/kg	5	EPA 8260B	04/07/17	04/07/17 16:18	GFH	
2-Hexanone (MBK)	ND	ug/kg	11	EPA 8260B	04/07/17	04/07/17 16:18	GFH	
Dibromochloromethane	ND	ug/kg	5	EPA 8260B	04/07/17	04/07/17 16:18	GFH	
1.2-Dibromoethane	ND	ug/kg	5	EPA 8260B	04/07/17	04/07/17 16:18	GFH	
Chlorobenzene	ND	ug/kg	5	EPA 8260B	04/07/17	04/07/17 16:18	GFH	
Ethylbenzene	ND	uq/kq	5	EPA 8260B	04/07/17	04/07/17 16:18	GFH	
m&p-Xvlene	ND	ug/ka	11	EPA 8260B	04/07/17	04/07/17 16:18	GFH	
o-Xvlene	ND	ug/ka	5	EPA 8260B	04/07/17	04/07/17 16:18	GFH	
Styrene	ND	ug/ka	5	EPA 8260B	04/07/17	04/07/17 16:18	GFH	
Bromoform	ND	ug/kg	5	EPA 8260B	04/07/17	04/07/17 16:18	GFH	
- 70.2								

Page 3 of 30

Certificate of Analysis

Jenkins Environmental, Inc. 8600 LaSalle Road York Building, Suite 509 Towson, MD 21286

Project:	Stockpiles - MCM
Site Location:	Sparrows Point, MD
Project Number:	2017-028

Field Sample ID:	017-028-381		Mat	rix: Solid		La	b ID: 17040	601-01
		Result	Unit	LLQ	Method	Prepared	Analyzed	Init.
Target Compound Lis	st - VOLATILES							
Isopropylbenzene		ND	ug/kg	5	EPA 8260B	04/07/17	04/07/17 16:18	GFH
1,1,2,2-Tetrachloro	ethane	ND	ug/kg	5	EPA 8260B	04/07/17	04/07/17 16:18	GFH
1,3-Dichlorobenzer	1e	ND	ug/kg	5	EPA 8260B	04/07/17	04/07/17 16:18	GFH
1,4-Dichlorobenzer	ne	ND	ug/kg	5	EPA 8260B	04/07/17	04/07/17 16:18	GFH
1,2-Dichlorobenzer	ne	ND	ug/kg	5	EPA 8260B	04/07/17	04/07/17 16:18	GFH
1,2-Dibromo-3-chlo	propropane	ND	ug/kg	5	EPA 8260B	04/07/17	04/07/17 16:18	GFH
1,2,4-Trichlorobenz	zene	ND	ug/kg	5	EPA 8260B	04/07/17	04/07/17 16:18	GFH
Naphthalene		ND	ug/kg	11	EPA 8260B	04/07/17	04/07/17 16:18	GFH
Ethyl t-butyl ether (ETBE)	ND	ug/kg	5	EPA 8260B	04/07/17	04/07/17 16:18	GFH
tert-Butanol (TBA)		ND	ug/kg	26	EPA 8260B	04/07/17	04/07/17 16:18	GFH
Diisopropyl ether (E	DIPE)	ND	ug/kg	5	EPA 8260B	04/07/17	04/07/17 16:18	GFH
tert-Amyl methyl et	her (TAME)	ND	ug/kg	5	EPA 8260B	04/07/17	04/07/17 16:18	GFH
tert-Amyl alcohol (T	TAA)	ND	ug/kg	26	EPA 8260B	04/07/17	04/07/17 16:18	GFH
tert-Amyl ethyl ethe	er (TAEE)	ND	ug/kg	5	EPA 8260B	04/07/17	04/07/17 16:18	GFH
Total Metals								
Aluminum		6,500	mg/kg	19	EPA 6020A	04/06/17	04/10/17 11:07	MEL
Antimony		ND	mg/kg	1.9	EPA 6020A	04/06/17	04/10/17 11:07	MEL
Arsenic		2.2	mg/kg	0.38	EPA 6020A	04/06/17	04/10/17 11:07	MEL
Barium		76	mg/kg	1.9	EPA 6020A	04/06/17	04/10/17 11:07	MEL
Beryllium		ND	mg/kg	1.9	EPA 6020A	04/06/17	04/10/17 11:07	MEL
Cadmium		ND	mg/kg	1.9	EPA 6020A	04/06/17	04/10/17 11:07	MEL
Calcium		83,000	mg/kg	38	EPA 6020A	04/06/17	04/10/17 11:07	MEL
Chromium		36	mg/kg	1.9	EPA 6020A	04/06/17	04/10/17 11:07	MEL
Cobalt		2.4	mg/kg	1.9	EPA 6020A	04/06/17	04/10/17 11:07	MEL
Copper		23	mg/kg	1.9	EPA 6020A	04/06/17	04/10/17 11:07	MEL
Iron		12,000	mg/kg	38	EPA 6020A	04/06/17	04/10/17 11:07	MEL
Lead		12	mg/kg	1.9	EPA 6020A	04/06/17	04/10/17 11:07	MEL
Magnesium		11,000	mg/kg	38	EPA 6020A	04/06/17	04/10/17 11:07	MEL
Manganese		440	mg/kg	1.9	EPA 6020A	04/06/17	04/10/17 11:07	MEL
Mercury		ND	mg/kg	0.077	EPA 6020A	04/06/17	04/10/17 11:07	MEL
Nickel		15	mg/kg	1.9	EPA 6020A	04/06/17	04/10/17 11:07	MEL
Potassium		1,500	mg/kg	38	EPA 6020A	04/06/17	04/10/17 11:07	MEL
Selenium		ND	mg/kg	1.9	EPA 6020A	04/06/17	04/10/17 11:07	MEL
Silver		ND	mg/kg	1.9	EPA 6020A	04/06/17	04/10/17 11:07	MEL
Sodium		470	mg/kg	38	EPA 6020A	04/06/17	04/10/17 11:07	MEL
Thallium		ND	mg/kg	1.5	EPA 6020A	04/06/17	04/10/17 11:07	MEL
Vanadium		15	mg/kg	1.9	EPA 6020A	04/06/17	04/10/17 11:07	MEL
Zinc		64	mg/kg	1.9	EPA 6020A	04/06/17	04/10/17 11:07	MEL

 Date Sampled:
 04/05/17 10:08

 Date Received:
 04/06/17 9:49

 Date Issued:
 04/13/17

17040601

SDG Number:

Page 4 of 30

Towson, MD 212	286							
Project: Site Location: Project Number:	Stockpiles - N Sparrows Poi 2017-028	/ICM nt, MD				SDG Number	r: 170406 [,]	01
Field Sample ID: 017-028-381			Mat	rix: Soli	d	La	ab ID: 17040	601-01
		Result	Unit	LLQ	Method	Prepared	Analyzed	Init.
Total Petroleum Hydrocar	bons - (C10-C28) D	RO						
Diesel Range Organics		950	mg/kg	.11	EPA 8015C	04/10/17	04/12/17 14:52	AC
TPH & Oil and Grease - H	IEM							
TPH & Oil & Grease		1,700	mg/kg	27	EPA 9071B	04/12/17	04/13/17 14:16	AC

Notes/Qualifiers;

Approved by:

Matt Obher

Date Issued:

QC Chemist

04/13/17

LLQ- Lowest Level of Quantitation

ND - Not Detected at a concentration greater than or equal to the LLQ.

Results reported on a dry weight basis.

York Building, Suite 509

Access World - interior demolition debris stockpiled in rear of building

Analytical Report for

GTA - Abingdon

Certificate of Analysis No.: 17041412

Project Manager: Ben Myers Project Name : 37162082 Project Location: Sparrows Point Project ID : 31162082

April 21, 2017 Phase Separation Science, Inc. 6630 Baltimore National Pike Baltimore, MD 21228 Phone: (410) 747-8770 Fax: (410) 788-8723

PHASE SEPARATION SCIENCE, INC.

April 21, 2017

Ben Myers GTA - Abingdon 3445-A Box Hill Corporate Ctr. Dr. Abingdon, MD 21009

Reference: PSS Work Order(s) No: **17041412** Project Name: 37162082 Project Location: Sparrows Point Project ID.: 31162082

Dear Ben Myers :

This report includes the analytical results from the analyses performed on the samples received under the project name referenced above and identified with the Phase Separation Science (PSS) Work Order(s) numbered **17041412**.

All work reported herein has been performed in accordance with current NELAP standards, referenced methodologies, PSS Standard Operating Procedures and the PSS Quality Assurance Manual unless otherwise noted in the Case Narrative Summary. PSS is limited in liability to the actual cost of the sample analysis done.

PSS reserves the right to return any unused samples, extracts or related solutions. Otherwise, the samples are scheduled for disposal, without any further notice, on May 19, 2017, with the exception of air canisters which are cleaned immediately following analysis. This includes any samples that were received with a request to be held but lacked a specific hold period. It is your responsibility to provide a written request defining a specific disposal date if additional storage is required. Upon receipt , the request will be acknowledged by PSS, thus extending the storage period.

This report shall not be reproduced except in full, without the written approval of an authorized PSS representative. A copy of this report will be retained by PSS for at least 5 years, after which time it will be disposed of without further notice, unless prior arrangements have been made.

We thank you for selecting Phase Separation Science, Inc. to serve your analytical needs. If you have any questions concerning this report, do not hesitate to contact us at 410-747-8770 or info@phaseonline.com.

Sincerely,

Dan Prucnal Laboratory Manager

Sample Summary Client Name: GTA - Abingdon Project Name: 37162082

Work Order Number(s): 17041412

Project ID: 31162082

The following samples were received under chain of custody by Phase Separation Science (PSS) on 04/14/2017 at 12:50 pm

Lab Sample Id	Sample Id	Matrix	Date/Time Collected
17041412-001	GTA-SE	SOIL	04/14/17 11:00
17041412-002	GTA-SW	SOIL	04/14/17 11:30
17041412-003	GTA-N+W	SOIL	04/14/17 12:00

Please reference the Chain of Custody and Sample Receipt Checklist for specific container counts and preservatives. Any sample conditions not in compliance with sample acceptance criteria are described in Case Narrative Summary.

Notes:

- 1. The presence of a common laboratory contaminant such as methylene chloride may be considered a possible laboratory artifact. Where observed, appropriate consideration of data should be taken.
- 2. Unless otherwise noted in the case narrative, results are reported on a dry weight basis with the exception of pH, flashpoint, moisture, and paint filter test.
- 3. Drinking water samples collected for the purpose of compliance with SDWA may not be suitable for their intended use unless collected by a certified sampler [COMAR 26.08.05.07.C.2].
- 4. The analyses of 1,2-dibromo-3-chloropropane (DBCP) and 1,2-dibromoethane (EDB) by EPA 524.2 and calcium, magnesium, sodium and iron by EPA 200.8 are not currently promulgated for use in testing to meet the Safe Drinking Water Act and as such cannot be used for compliance purposes. The listings of the current promulgated methods for testing in compliance with the Safe Drinking Water Act can be found in the 40 CFR part 141.1, for the primary drinking water contaminates, and part 141.3, for the secondary drinking water contaminates.
- 5. Sample prepared under EPA 3550C with concentrations greater than 20 mg/Kg should employ the microtip extraction procedure if required to meet data quality objectives.
- 6. The analysis of acrolein by EPA 624 must be analyzed within three days of sampling unless pH is adjusted to 4-5 units [40 CFR part 136.3(e)].
- 7. Method 180.1, The Determination of Turbidity by Nephelometry, recommends samples over 40 NTU be diluted until the turbidity falls below 40 units. Routine samples over 40 NTU may not be diluted as long as the data quality objectives are not affected.
- 8. Alkalinity results analyzed by EPA 310.2 that are reported by dilution are estimated and are not in compliance with method requirements.

Standard Flags/Abbreviations:

B A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.

- C Results Pending Final Confirmation.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- Fail The result exceeds the regulatory level for Toxicity Characteristic (TCLP) as cited in 40 CFR 261.24 Table 1.
- J The target analyte was positively identified below the reporting limit but greater than the MDL.
- MDL This is the Laboratory Method Detection Limit which is equivalent to the Limit of Detection (LOD). The LOD is an estimate of the minimum amount of a substance that an analytical process can reliably detect. This value will remain constant across multiple similar instrumentation and among different analysts. An LOD is analyte and matrix specific.
- ND Not Detected at or above the reporting limit.
- RL PSS Reporting Limit.
- U Not detected.

Certifications:

NELAP Certifications: PA 68-03330, VA 460156 State Certifications: MD 179, WV 303 Regulated Soil Permit: P330-12-00268 NSWC USCG Accepted Laboratory LDBE MWAA LD1997-0041-2015

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS No: 17041412 GTA - Abingdon, Abingdon, MD April 21, 2017

Sample ID: GTA-SE		Date/Time	e Sampled:	04/14/	2017 11:00	PSS Sample	e ID: 17041412	2-001	
Matrix: SOIL	I	Date/Time	Received:	04/14/	2017 12:50	% S	olids: 86		
PP Metals	Analytica	I Method: S	SW-846 6020	A		Preparation Meth	nod: 3050B		
	Result	Units	RL	Flag	Dil	Prepared	Analyzed	Analyst	
Antimony	ND	mg/kg	2.1		1	04/18/17	04/18/17 19:52	2 1033	
Arsenic	3.6	mg/kg	0.42		1	04/18/17	04/18/17 19:52	2 1033	
Beryllium	ND	mg/kg	2.1		1	04/18/17	04/18/17 19:52	2 1033	
Cadmium	ND	mg/kg	2.1		1	04/18/17	04/18/17 19:52	2 1033	
Chromium	300	mg/kg	21		10	04/18/17	04/19/17 18:19	9 1033	
Copper	23	mg/kg	2.1		1	04/18/17	04/18/17 19:52	2 1033	
Lead	97	mg/kg	21		10	04/18/17	04/19/17 18:19	9 1033	
Mercury	ND	mg/kg	0.084		1	04/18/17	04/18/17 19:52	2 1033	
Nickel	12	mg/kg	2.1		1	04/18/17	04/18/17 19:52	2 1033	
Selenium	ND	mg/kg	2.1		1	04/18/17	04/18/17 19:52	2 1033	
Silver	ND	mg/kg	2.1		1	04/18/17	04/18/17 19:52	2 1033	
Thallium	ND	mg/kg	1.7		1	04/18/17	04/18/17 19:52	2 1033	
Zinc	230	mg/kg	8.4		1	04/18/17	04/18/17 19:52	2 1033	
Chromium, Hexavalent	Analytica	Il Method: S	SW-846 7196	A		Preparation Meth	Preparation Method: SW3060A		
	Result	Units	RL	Flag	Dil	Prepared	Analyzed	Analyst	
Chromium, Hexavalent	ND	mg/kg	1.2		1	04/18/17	04/19/17 13:40) 1053	
Total Petroleum Hydrocarbons - DRO DF/HF - No. 2/diesel fuel and heavier fuel/o	Analytica il patterns obs	I Method: S	SW-846 8015 ple.	С		Preparation Meth	10d: SW3550C		
	Result	Units	RL	Flag	Dil	Prepared	Analyzed	Analyst	
TPH-DRO (Diesel Range Organics)	66	mg/kg	12	DF	1	04/19/17	04/20/17 18:17	7 1059	

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS No: 17041412

GTA - Abingdon, Abingdon, MD April 21, 2017

Sample ID: GTA-SE		Date/Tim	e Sampled:	04/14/2	017 11:00	PSS Sample	e ID: 17041412	2-001
Matrix: SOIL	1	Date/Tim	e Received:	04/14/2	017 12:50	% S	olids: 86	
Polychlorinated Biphenyls	Analytical Method: SW-846 8082 A				(Preparation Meth Clean up Method	nod: SW3550C : SW846 3665A	
	Result	Units	RL	Flag	Dil	Prepared	Analyzed	Analyst
PCB-1016	ND	mg/kg	0.059		1	04/17/17	04/18/17 17:48	1029
PCB-1221	ND	mg/kg	0.059		1	04/17/17	04/18/17 17:48	1029
PCB-1232	ND	mg/kg	0.059		1	04/17/17	04/18/17 17:48	1029
PCB-1242	ND	mg/kg	0.059		1	04/17/17	04/18/17 17:48	1029
PCB-1248	ND	mg/kg	0.059		1	04/17/17	04/18/17 17:48	1029
PCB-1254	ND	mg/kg	0.059		1	04/17/17	04/18/17 17:48	1029
PCB-1260	ND	mg/kg	0.059		1	04/17/17	04/18/17 17:48	1029

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS No: 17041412

GTA - Abingdon, Abingdon, MD April 21, 2017

Sample ID: GTA-SE		Date/Time	Sampled:	04/14/20	17 11:00	PSS Sample	e ID: 17041412	2-001
Matrix: SOIL		Date/Time	Received:	04/14/20	17 12:50	% S	olids: 86	
TCL Semivolatile Organic Compounds	Analytica	I Method: S	W-846 8270	С		Preparation Meth	nod: SW3550C	
	Result	Units	RL	Flag [Dil	Prepared	Analyzed	Analys
Acenaphthene	ND	ug/kg	19		1	04/18/17	04/19/17 15:40	1055
Acenaphthylene	66	ug/kg	19		1	04/18/17	04/19/17 15:40	1055
Acetophenone	ND	ug/kg	190		1	04/18/17	04/19/17 15:40	1055
Anthracene	48	ug/kg	19		1	04/18/17	04/19/17 15:40	1055
Atrazine	ND	ug/kg	190		1	04/18/17	04/19/17 15:40	1055
Benzo(a)anthracene	230	ug/kg	19		1	04/18/17	04/19/17 15:40	1055
Benzo(a)pyrene	240	ug/kg	19		1	04/18/17	04/19/17 15:40	1055
Benzo(b)fluoranthene	250	ug/kg	19		1	04/18/17	04/19/17 15:40	1055
Benzo(g,h,i)perylene	150	ug/kg	19		1	04/18/17	04/19/17 15:40	1055
Benzo(k)fluoranthene	200	ug/kg	19		1	04/18/17	04/19/17 15:40	1055
Biphenyl (Diphenyl)	ND	ug/kg	190		1	04/18/17	04/19/17 15:40	1055
Butyl benzyl phthalate	ND	ug/kg	190		1	04/18/17	04/19/17 15:40	1055
bis(2-chloroethoxy) methane	ND	ug/kg	190		1	04/18/17	04/19/17 15:40	1055
bis(2-chloroethyl) ether	ND	ug/kg	190		1	04/18/17	04/19/17 15:40	1055
bis(2-chloroisopropyl) ether	ND	ug/kg	190		1	04/18/17	04/19/17 15:40	1055
bis(2-ethylhexyl) phthalate	ND	ug/kg	190		1	04/18/17	04/19/17 15:40	1055
4-Bromophenylphenyl ether	ND	ug/kg	190		1	04/18/17	04/19/17 15:40	1055
Di-n-butyl phthalate	ND	ug/kg	190		1	04/18/17	04/19/17 15:40	1055
Carbazole	ND	ug/kg	190		1	04/18/17	04/19/17 15:40	1055
Caprolactam	ND	ug/kg	190		1	04/18/17	04/19/17 15:40	1055
4-Chloro-3-methyl phenol	ND	ug/kg	190		1	04/18/17	04/19/17 15:40	1055
4-Chloroaniline	ND	ug/kg	190		1	04/18/17	04/19/17 15:40	1055
2-Chloronaphthalene	ND	ug/kg	190		1	04/18/17	04/19/17 15:40	1055
2-Chlorophenol	ND	ug/kg	190		1	04/18/17	04/19/17 15:40	1055
4-Chlorophenyl Phenyl ether	ND	ug/kg	190		1	04/18/17	04/19/17 15:40	1055
Chrysene	220	ug/kg	19		1	04/18/17	04/19/17 15:40	1055
Dibenz(a,h)Anthracene	51	ug/kg	19		1	04/18/17	04/19/17 15:40	1055
Dibenzofuran	ND	ug/kg	190		1	04/18/17	04/19/17 15:40	1055
3,3-Dichlorobenzidine	ND	ug/kg	190		1	04/18/17	04/19/17 15:40	1055
2,4-Dichlorophenol	ND	ug/kg	190		1	04/18/17	04/19/17 15:40	1055

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS No: 17041412

GTA - Abingdon, Abingdon, MD April 21, 2017

Sample ID: GTA-SE		Date/Time	Sampled:	04/14/201	7 11:00	PSS Sample	e ID: 17041412	2-001
Matrix: SOIL	Γ	Date/Time	Received:	04/14/201	7 12:50	% S	olids: 86	
TCL Semivolatile Organic Compounds	Analytica	I Method: S	SW-846 8270	С		Preparation Meth	nod: SW3550C	
	Result	Units	RL	Flag Di	il	Prepared	Analyzed	Analyst
Diethyl phthalate	ND	ug/kg	190		1	04/18/17	04/19/17 15:40	1055
Dimethyl phthalate	ND	ug/kg	190		1	04/18/17	04/19/17 15:40	1055
2,4-Dimethylphenol	ND	ug/kg	190		1	04/18/17	04/19/17 15:40	1055
4,6-Dinitro-2-methyl phenol	ND	ug/kg	190		1	04/18/17	04/19/17 15:40	1055
2,4-Dinitrophenol	ND	ug/kg	390		1	04/18/17	04/19/17 15:40	1055
2,4-Dinitrotoluene	ND	ug/kg	190		1	04/18/17	04/19/17 15:40	1055
2,6-Dinitrotoluene	ND	ug/kg	190		1	04/18/17	04/19/17 15:40	1055
Fluoranthene	300	ug/kg	19		1	04/18/17	04/19/17 15:40	1055
Fluorene	ND	ug/kg	19		1	04/18/17	04/19/17 15:40	1055
Hexachlorobenzene	ND	ug/kg	190		1	04/18/17	04/19/17 15:40	1055
Hexachlorobutadiene	ND	ug/kg	190		1	04/18/17	04/19/17 15:40	1055
Hexachlorocyclopentadiene	ND	ug/kg	190		1	04/18/17	04/19/17 15:40	1055
Hexachloroethane	ND	ug/kg	190		1	04/18/17	04/19/17 15:40	1055
Indeno(1,2,3-c,d)Pyrene	200	ug/kg	19		1	04/18/17	04/19/17 15:40	1055
Isophorone	ND	ug/kg	190		1	04/18/17	04/19/17 15:40	1055
2-Methylnaphthalene	ND	ug/kg	19		1	04/18/17	04/19/17 15:40	1055
2-Methyl phenol	ND	ug/kg	190		1	04/18/17	04/19/17 15:40	1055
3&4-Methylphenol	ND	ug/kg	190		1	04/18/17	04/19/17 15:40	1055
Naphthalene	54	ug/kg	19		1	04/18/17	04/19/17 15:40	1055
2-Nitroaniline	ND	ug/kg	190		1	04/18/17	04/19/17 15:40	1055
3-Nitroaniline	ND	ug/kg	190		1	04/18/17	04/19/17 15:40	1055
4-Nitroaniline	ND	ug/kg	190		1	04/18/17	04/19/17 15:40	1055
Nitrobenzene	ND	ug/kg	190		1	04/18/17	04/19/17 15:40	1055
2-Nitrophenol	ND	ug/kg	190		1	04/18/17	04/19/17 15:40	1055
4-Nitrophenol	ND	ug/kg	190		1	04/18/17	04/19/17 15:40	1055
N-Nitrosodi-n-propyl amine	ND	ug/kg	190		1	04/18/17	04/19/17 15:40	1055
N-Nitrosodiphenylamine	ND	ug/kg	190		1	04/18/17	04/19/17 15:40	1055
Di-n-octyl phthalate	ND	ug/kg	190		1	04/18/17	04/19/17 15:40	1055
Pentachlorophenol	ND	ug/kg	190		1	04/18/17	04/19/17 15:40	1055
Phenanthrene	100	ug/kg	19		1	04/18/17	04/19/17 15:40	1055

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS No: 17041412

GTA - Abingdon, Abingdon, MD April 21, 2017

Γ	Date/Tim Date/Time	e Sampled: e Received:	04/14/2 04/14/2	2017 11:00 2017 12:50	PSS Sample % S	e ID: 17041412 olids: 86	2-001
Analytica	I Method:	SW-846 8270	С		Preparation Meth	od: SW3550C	
Result	Units	RL	Flag	Dil	Prepared	Analyzed	Analyst
ND	ug/kg	190		1	04/18/17	04/19/17 15:40	1055
280	ug/kg	19		1	04/18/17	04/19/17 15:40	1055
ND	ug/kg	190		1	04/18/17	04/19/17 15:40	1055
ND	ug/kg	190		1	04/18/17	04/19/17 15:40	1055
ND	ug/kg	190		1	04/18/17	04/19/17 15:40	1055
	Analytica Result ND 280 ND ND ND ND	Date/Time Date/Time Analytical Method: Result Units ND ug/kg 280 ug/kg ND ug/kg	Date/Time Sampled:Date/Time Received:Date/Time Received:Analytical Method: SW-846 8270ResultUnitsRLNDug/kg190280ug/kg190NDug/kg190NDug/kg190NDug/kg190NDug/kg190NDug/kg190NDug/kg190	Date/Time Sampled: 04/14/2 Date/Time Received: 04/14/2 Date/Time Received: 04/14/2 Analytical Method: SW-846 8270 C Result Units RL Flag ND ug/kg 190 190 280 ug/kg 190 190 ND ug/kg 190 190 ND ug/kg 190 190 ND ug/kg 190 190	Date/Time Sampled: 04/14/2017 11:00 Date/Time Received: 04/14/2017 12:50 Analytical Method: SW-846 8270 C Result Units RL Flag Dil ND ug/kg 190 1 280 ug/kg 190 1 ND ug/kg 190 1 ND ug/kg 190 1 ND ug/kg 190 1 ND ug/kg 190 1	Date/Time Sampled: 04/14/2017 11:00 PSS Sampled: Date/Time Received: 04/14/2017 12:50 % S Date/Time Received: 04/14/2017 12:50 % S Analytical Method: SW-846 8270 C Preparation Method Result Units RL Flag Dil Prepared ND ug/kg 190 1 04/18/17 280 ug/kg 190 1 04/18/17 ND ug/kg 190 1 04/18/17	Date/Time Sampled: 04/14/2017 11:00 PSS Sample ID: 17041412 Date/Time Received: 04/14/2017 12:50 % Solids: 86 Date/Time Received: 04/14/2017 12:50 % Solids: 86 Analytical Method: SW-846 8270 C Preparation Method: SW3550C Result Units RL Flag Dil Prepared Analyzed ND ug/kg 190 1 04/18/17 04/19/17 15:40 ND ug/kg 190 1 04/18/17 04/19/17 15:40

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS No: 17041412 GTA - Abingdon, Abingdon, MD April 21, 2017

Sample ID: GTA-SW		Date/Time Sampled: 04/14/20			2017 11:30	PSS Sample ID: 17041412-002		
Matrix: SOIL	I	Date/Time	Received:	04/14/	2017 12:50	% S	olids: 91	
PP Metals	Analytica	al Method: S	W-846 6020	А		Preparation Meth	od: 3050B	
	Result	Units	RL	Flag	Dil	Prepared	Analyzed	Analyst
Antimony	ND	mg/kg	2.5		1	04/18/17	04/18/17 19:59	1033
Arsenic	6.2	mg/kg	0.51		1	04/18/17	04/18/17 19:59	1033
Beryllium	ND	mg/kg	2.5		1	04/18/17	04/18/17 19:59	1033
Cadmium	ND	mg/kg	2.5		1	04/18/17	04/18/17 19:59	1033
Chromium	170	mg/kg	25		10	04/18/17	04/19/17 18:25	5 1033
Copper	26	mg/kg	2.5		1	04/18/17	04/18/17 19:59	1033
Lead	110	mg/kg	25		10	04/18/17	04/19/17 18:25	5 1033
Mercury	ND	mg/kg	0.10		1	04/18/17	04/18/17 19:59	1033
Nickel	20	mg/kg	2.5		1	04/18/17	04/18/17 19:59	1033
Selenium	ND	mg/kg	2.5		1	04/18/17	04/18/17 19:59	1033
Silver	ND	mg/kg	2.5		1	04/18/17	04/18/17 19:59	1033
Thallium	ND	mg/kg	2.0		1	04/18/17	04/18/17 19:59	1033
Zinc	230	mg/kg	10		1	04/18/17	04/18/17 19:59	1033
Chromium, Hexavalent	Analytica	al Method: S	W-846 7196	A		Preparation Meth	nod: SW3060A	
	Result	Units	RL	Flag	Dil	Prepared	Analyzed	Analyst
Chromium, Hexavalent	ND	mg/kg	1.1		1	04/18/17	04/19/17 13:43	1053
Total Petroleum Hydrocarbons - DRO DF/HF - No. 2/diesel fuel and heavier fuel/o	Analytica	al Method: S erved in sami	W-846 8015	С		Preparation Meth	od: SW3550C	
	Result	Units	RL	Flag	Dil	Prepared	Analyzed	Analyst
TPH-DRO (Diesel Range Organics)	47	mg/kg	11	DF	1	04/19/17	04/21/17 10:23	8 1059

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS No: 17041412

GTA - Abingdon, Abingdon, MD April 21, 2017

Sample ID: GTA-SW		Date/Tim	e Sampled:	04/14/2	017 11:30	PSS Sample	e ID: 17041412	2-002
Matrix: SOIL	C	Date/Time	e Received:	04/14/2	017 12:50	% Solids: 91		
Polychlorinated Biphenyls	Analytica	I Method: S	SW-846 8082	A	(od: SW3550C : SW846 3665A	50C 365A	
	Result	Units	RL	Flag	Dil	Prepared	Analyzed	Analyst
PCB-1016	ND	mg/kg	0.053		1	04/17/17	04/18/17 18:16	5 1029
PCB-1221	ND	mg/kg	0.053		1	04/17/17	04/18/17 18:16	5 1029
PCB-1232	ND	mg/kg	0.053		1	04/17/17	04/18/17 18:16	5 1029
PCB-1242	ND	mg/kg	0.053		1	04/17/17	04/18/17 18:16	5 1029
PCB-1248	ND	mg/kg	0.053		1	04/17/17	04/18/17 18:16	1029
PCB-1254	ND	mg/kg	0.053		1	04/17/17	04/18/17 18:16	1029
PCB-1260	ND	mg/kg	0.053		1	04/17/17	04/18/17 18:16	1029

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS No: 17041412

GTA - Abingdon, Abingdon, MD April 21, 2017

Sample ID: GTA-SW	Date/Time Sampled:			04/14/201	17 11:30	PSS Sample ID: 17041412-002			
Matrix: SOIL	[Date/Time	Received:	04/14/201	17 12:50	% S	olids: 91		
TCL Semivolatile Organic Compounds	Analytica	I Method: S	W-846 8270	С		Preparation Method: SW3550C			
	Result	Units	RL	Flag D	il	Prepared	Analyzed	Analyst	
Acenaphthene	34	ug/kg	18		1	04/18/17	04/19/17 16:40	1055	
Acenaphthylene	330	ug/kg	18		1	04/18/17	04/19/17 16:40	1055	
Acetophenone	ND	ug/kg	180		1	04/18/17	04/19/17 16:40	1055	
Anthracene	380	ug/kg	18		1	04/18/17	04/19/17 16:40	1055	
Atrazine	ND	ug/kg	180		1	04/18/17	04/19/17 16:40	1055	
Benzo(a)anthracene	1,300	ug/kg	18		1	04/18/17	04/19/17 16:40	1055	
Benzo(a)pyrene	1,000	ug/kg	18		1	04/18/17	04/19/17 16:40	1055	
Benzo(b)fluoranthene	1,100	ug/kg	18		1	04/18/17	04/19/17 16:40	1055	
Benzo(g,h,i)perylene	580	ug/kg	18		1	04/18/17	04/19/17 16:40	1055	
Benzo(k)fluoranthene	1,000	ug/kg	18		1	04/18/17	04/19/17 16:40	1055	
Biphenyl (Diphenyl)	ND	ug/kg	180		1	04/18/17	04/19/17 16:40	1055	
Butyl benzyl phthalate	ND	ug/kg	180		1	04/18/17	04/19/17 16:40	1055	
bis(2-chloroethoxy) methane	ND	ug/kg	180		1	04/18/17	04/19/17 16:40	1055	
bis(2-chloroethyl) ether	ND	ug/kg	180		1	04/18/17	04/19/17 16:40	1055	
bis(2-chloroisopropyl) ether	ND	ug/kg	180		1	04/18/17	04/19/17 16:40	1055	
bis(2-ethylhexyl) phthalate	ND	ug/kg	180		1	04/18/17	04/19/17 16:40	1055	
4-Bromophenylphenyl ether	ND	ug/kg	180		1	04/18/17	04/19/17 16:40	1055	
Di-n-butyl phthalate	ND	ug/kg	180		1	04/18/17	04/19/17 16:40	1055	
Carbazole	200	ug/kg	180		1	04/18/17	04/19/17 16:40	1055	
Caprolactam	ND	ug/kg	180		1	04/18/17	04/19/17 16:40	1055	
4-Chloro-3-methyl phenol	ND	ug/kg	180		1	04/18/17	04/19/17 16:40	1055	
4-Chloroaniline	ND	ug/kg	180		1	04/18/17	04/19/17 16:40	1055	
2-Chloronaphthalene	ND	ug/kg	180		1	04/18/17	04/19/17 16:40	1055	
2-Chlorophenol	ND	ug/kg	180		1	04/18/17	04/19/17 16:40	1055	
4-Chlorophenyl Phenyl ether	ND	ug/kg	180		1	04/18/17	04/19/17 16:40	1055	
Chrysene	1,100	ug/kg	18		1	04/18/17	04/19/17 16:40	1055	
Dibenz(a,h)Anthracene	190	ug/kg	18		1	04/18/17	04/19/17 16:40	1055	
Dibenzofuran	ND	ug/kg	180		1	04/18/17	04/19/17 16:40	1055	
3,3-Dichlorobenzidine	ND	ug/kg	180		1	04/18/17	04/19/17 16:40	1055	
2,4-Dichlorophenol	ND	ug/kg	180		1	04/18/17	04/19/17 16:40	1055	

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS No: 17041412

GTA - Abingdon, Abingdon, MD April 21, 2017

Sample ID: GTA-SW		Date/Tim	e Sampled:	04/14/2017	7 11:30	PSS Sample	PSS Sample ID: 17041412-002		
Matrix: SOIL	[Date/Time Received:			7 12:50	olids: 91			
TCL Semivolatile Organic Compounds	Analytica	I Method:	SW-846 8270	С	F	Preparation Meth	nod: SW3550C		
	Result	Units	RL	Flag Dil		Prepared	Analyzed	Analyst	
Diethyl phthalate	ND	ug/kg	180		1	04/18/17	04/19/17 16:40	1055	
Dimethyl phthalate	ND	ug/kg	180		1	04/18/17	04/19/17 16:40	1055	
2,4-Dimethylphenol	ND	ug/kg	180		1	04/18/17	04/19/17 16:40	1055	
4,6-Dinitro-2-methyl phenol	ND	ug/kg	180		1	04/18/17	04/19/17 16:40	1055	
2,4-Dinitrophenol	ND	ug/kg	370		1	04/18/17	04/19/17 16:40	1055	
2,4-Dinitrotoluene	ND	ug/kg	180		1	04/18/17	04/19/17 16:40	1055	
2,6-Dinitrotoluene	ND	ug/kg	180		1	04/18/17	04/19/17 16:40	1055	
Fluoranthene	2,300	ug/kg	18		1	04/18/17	04/19/17 16:40	1055	
Fluorene	120	ug/kg	18		1	04/18/17	04/19/17 16:40	1055	
Hexachlorobenzene	ND	ug/kg	180		1	04/18/17	04/19/17 16:40	1055	
Hexachlorobutadiene	ND	ug/kg	180		1	04/18/17	04/19/17 16:40	1055	
Hexachlorocyclopentadiene	ND	ug/kg	180		1	04/18/17	04/19/17 16:40	1055	
Hexachloroethane	ND	ug/kg	180		1	04/18/17	04/19/17 16:40	1055	
Indeno(1,2,3-c,d)Pyrene	770	ug/kg	18		1	04/18/17	04/19/17 16:40	1055	
Isophorone	ND	ug/kg	180		1	04/18/17	04/19/17 16:40	1055	
2-Methylnaphthalene	39	ug/kg	18		1	04/18/17	04/19/17 16:40	1055	
2-Methyl phenol	ND	ug/kg	180		1	04/18/17	04/19/17 16:40	1055	
3&4-Methylphenol	ND	ug/kg	180		1	04/18/17	04/19/17 16:40	1055	
Naphthalene	170	ug/kg	18		1	04/18/17	04/19/17 16:40	1055	
2-Nitroaniline	ND	ug/kg	180		1	04/18/17	04/19/17 16:40	1055	
3-Nitroaniline	ND	ug/kg	180		1	04/18/17	04/19/17 16:40	1055	
4-Nitroaniline	ND	ug/kg	180		1	04/18/17	04/19/17 16:40	1055	
Nitrobenzene	ND	ug/kg	180		1	04/18/17	04/19/17 16:40	1055	
2-Nitrophenol	ND	ug/kg	180		1	04/18/17	04/19/17 16:40	1055	
4-Nitrophenol	ND	ug/kg	180		1	04/18/17	04/19/17 16:40	1055	
N-Nitrosodi-n-propyl amine	ND	ug/kg	180		1	04/18/17	04/19/17 16:40	1055	
N-Nitrosodiphenylamine	ND	ug/kg	180		1	04/18/17	04/19/17 16:40	1055	
Di-n-octyl phthalate	ND	ug/kg	180		1	04/18/17	04/19/17 16:40	1055	
Pentachlorophenol	ND	ug/kg	180		1	04/18/17	04/19/17 16:40	1055	
Phenanthrene	1,500	ug/kg	18		1	04/18/17	04/19/17 16:40	1055	

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS No: 17041412

GTA - Abingdon, Abingdon, MD April 21, 2017

C	Date/Tim Date/Tim	e Sampled: e Received:	04/14/2 04/14/2	2017 11:30 2017 12:50	7 11:30 PSS Sample ID: 17041 17 12:50 % Solids: 91		
Analytica	I Method:	SW-846 8270	С		Preparation Meth	od: SW3550C	
Result	Units	RL	Flag	Dil	Prepared	Analyzed	Analyst
ND	ug/kg	180		1	04/18/17	04/19/17 16:40) 1055
1,900	ug/kg	18		1	04/18/17	04/19/17 16:40) 1055
ND	ug/kg	180		1	04/18/17	04/19/17 16:40) 1055
ND	ug/kg	180		1	04/18/17	04/19/17 16:40) 1055
ND	ug/kg	180		1	04/18/17	04/19/17 16:40) 1055
	Analytica Result ND 1,900 ND ND ND ND	Date/Tim Date/Tim Analytical Method: Result Units ND ug/kg 1,900 ug/kg ND ug/kg	Date/Time Sampled:Date/Time Received:Date/Time Received:Analytical Method: SW-846 8270ResultUnitsRLNDug/kg1801,900ug/kg180NDug/kg180NDug/kg180NDug/kg180NDug/kg180NDug/kg180NDug/kg180	Date/Time Sampled: 04/14/2 Date/Time Received: 04/14/2 Date/Time Received: 04/14/2 Analytical Method: SW-846 8270 C Result Units RL Flag ND ug/kg 180 14/2 ND ug/kg 180 14/2	Date/Time Sampled: 04/14/2017 11:30 Date/Time Received: 04/14/2017 12:50 Analytical Method: SW-846 8270 C Result Units RL Flag Dil ND ug/kg 180 1 1,900 ug/kg 180 1 ND ug/kg 180 1 ND ug/kg 180 1 ND ug/kg 180 1 ND ug/kg 180 1	Date/Time Sampled: 04/14/2017 11:30 PSS Sampled: Date/Time Received: 04/14/2017 12:50 % S Date/Time Received: 04/14/2017 12:50 % S Analytical Method: SW-846 8270 C Preparation Method: Result Units RL Flag Dil Prepared ND ug/kg 180 1 04/18/17 1,900 ug/kg 180 1 04/18/17 ND ug/kg 180 1 04/18/17	Date/Time Sampled: 04/14/2017 11:30 PSS Sample ID: 17041412 Date/Time Received: 04/14/2017 12:50 % Solids: 91 Date/Time Received: 04/14/2017 12:50 % Solids: 91 Analytical Method: SW-846 8270 C Preparation Method: SW3550C Result Units RL Flag Dil Prepared Analyzed ND ug/kg 180 1 04/18/17 04/19/17 16:40 ND ug/kg 180 1 04/18/17 04/19/17 16:40

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS No: 17041412 GTA - Abingdon, Abingdon, MD April 21, 2017

Sample ID: GTA-N+W	Date/Time Sampled: 04/14/2017 12:00				0 PSS Sample ID: 17041412-003			
Matrix: SOIL	I	Date/Time	Received:	04/14/	2017 12:50	% S	olids: 90	
PP Metals	Analytica	al Method: S	W-846 6020	А		Preparation Meth	nod: 3050B	
	Result	Units	RL	Flag	Dil	Prepared	Analyzed	Analyst
Antimony	ND	mg/kg	2.2		1	04/18/17	04/18/17 20:31	1033
Arsenic	3.9	mg/kg	0.44		1	04/18/17	04/18/17 20:31	1033
Beryllium	ND	mg/kg	2.2		1	04/18/17	04/18/17 20:31	1033
Cadmium	ND	mg/kg	2.2		1	04/18/17	04/18/17 20:31	1033
Chromium	140	mg/kg	22		10	04/18/17	04/19/17 18:58	1033
Copper	21	mg/kg	2.2		1	04/18/17	04/18/17 20:31	1033
Lead	70	mg/kg	22		10	04/18/17	04/19/17 18:58	1033
Mercury	0.092	mg/kg	0.088		1	04/18/17	04/18/17 20:31	1033
Nickel	13	mg/kg	2.2		1	04/18/17	04/18/17 20:31	1033
Selenium	ND	mg/kg	2.2		1	04/18/17	04/18/17 20:31	1033
Silver	ND	mg/kg	2.2		1	04/18/17	04/18/17 20:31	1033
Thallium	ND	mg/kg	1.8		1	04/18/17	04/18/17 20:31	1033
Zinc	170	mg/kg	8.8		1	04/18/17	04/18/17 20:31	1033
Chromium, Hexavalent	Analytica	al Method: S	W-846 7196	A		Preparation Meth	nod: SW3060A	
	Result	Units	RL	Flag	Dil	Prepared	Analyzed	Analyst
Chromium, Hexavalent	ND	mg/kg	1.1		1	04/18/17	04/19/17 13:46	1053
Total Petroleum Hydrocarbons - DRO DF/HF - No. 2/diesel fuel and heavier fuel/oi	Analytica patterns obs	al Method: S erved in sam	W-846 8015 ble.	С		Preparation Meth	rod: SW3550C	
	Result	Units	RL	Flag	Dil	Prepared	Analyzed	Analyst
TPH-DRO (Diesel Range Organics)	34	mg/kg	11	DF	1	04/19/17	04/20/17 18:42	1059

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS No: 17041412

GTA - Abingdon, Abingdon, MD April 21, 2017

Sample ID: GTA-N+W	[Date/Time Sa	mpled:	04/14/2	2017 12:00	PSS Sample	e ID: 17041412	2-003		
Matrix: SOIL	D	ate/Time Re	ceived:	04/14/2	2017 12:50	0 % Solids: 90				
Polychlorinated Biphenyls	Analytical	Method: SW-8	346 8082	A		Preparation Meth Clean up Method	od: SW3550C : SW846 3665A			
	Result	Units	RL	Flag	Dil	Prepared	Analyzed	Analyst		
PCB-1016	ND	mg/kg	0.056		1	04/17/17	04/18/17 18:44	1029		
PCB-1221	ND	mg/kg	0.056		1	04/17/17	04/18/17 18:44	1029		
PCB-1232	ND	mg/kg	0.056		1	04/17/17	04/18/17 18:44	1029		
PCB-1242	ND	mg/kg	0.056		1	04/17/17	04/18/17 18:44	1029		
PCB-1248	ND	mg/kg	0.056		1	04/17/17	04/18/17 18:44	1029		
PCB-1254	ND	mg/kg	0.056		1	04/17/17	04/18/17 18:44	1029		
PCB-1260	ND	mg/kg	0.056		1	04/17/17	04/18/17 18:44	1029		

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS No: 17041412

GTA - Abingdon, Abingdon, MD April 21, 2017

Sample ID: GTA-N+W		Date/Time	e Sampled:	04/14/2017	12:00 P	PSS Sample ID: 17041412-003			
Matrix: SOIL	[Date/Time	Received:	04/14/2017	12:50	% S	olids: 90		
TCL Semivolatile Organic Compounds	Analytica	I Method: S	SW-846 8270	Prep	eparation Method: SW3550C				
	Result	Units	RL	Flag Dil		Prepared	Analyzed	Analyst	
Acenaphthene	37	ug/kg	18	1		04/18/17	04/19/17 17:39	1055	
Acenaphthylene	110	ug/kg	18	1		04/18/17	04/19/17 17:39	1055	
Acetophenone	ND	ug/kg	180	1		04/18/17	04/19/17 17:39	1055	
Anthracene	95	ug/kg	18	1		04/18/17	04/19/17 17:39	1055	
Atrazine	ND	ug/kg	180	1		04/18/17	04/19/17 17:39	1055	
Benzo(a)anthracene	460	ug/kg	18	1		04/18/17	04/19/17 17:39	1055	
Benzo(a)pyrene	460	ug/kg	18	1		04/18/17	04/19/17 17:39	1055	
Benzo(b)fluoranthene	490	ug/kg	18	1		04/18/17	04/19/17 17:39	1055	
Benzo(g,h,i)perylene	270	ug/kg	18	1		04/18/17	04/19/17 17:39	1055	
Benzo(k)fluoranthene	430	ug/kg	18	1		04/18/17	04/19/17 17:39	1055	
Biphenyl (Diphenyl)	ND	ug/kg	180	1		04/18/17	04/19/17 17:39	1055	
Butyl benzyl phthalate	ND	ug/kg	180	1		04/18/17	04/19/17 17:39	1055	
bis(2-chloroethoxy) methane	ND	ug/kg	180	1		04/18/17	04/19/17 17:39	1055	
bis(2-chloroethyl) ether	ND	ug/kg	180	1		04/18/17	04/19/17 17:39	1055	
bis(2-chloroisopropyl) ether	ND	ug/kg	180	1		04/18/17	04/19/17 17:39	1055	
bis(2-ethylhexyl) phthalate	ND	ug/kg	180	1		04/18/17	04/19/17 17:39	1055	
4-Bromophenylphenyl ether	ND	ug/kg	180	1		04/18/17	04/19/17 17:39	1055	
Di-n-butyl phthalate	ND	ug/kg	180	1		04/18/17	04/19/17 17:39	1055	
Carbazole	ND	ug/kg	180	1		04/18/17	04/19/17 17:39	1055	
Caprolactam	ND	ug/kg	180	1		04/18/17	04/19/17 17:39	1055	
4-Chloro-3-methyl phenol	ND	ug/kg	180	1		04/18/17	04/19/17 17:39	1055	
4-Chloroaniline	ND	ug/kg	180	1		04/18/17	04/19/17 17:39	1055	
2-Chloronaphthalene	ND	ug/kg	180	1		04/18/17	04/19/17 17:39	1055	
2-Chlorophenol	ND	ug/kg	180	1		04/18/17	04/19/17 17:39	1055	
4-Chlorophenyl Phenyl ether	ND	ug/kg	180	1		04/18/17	04/19/17 17:39	1055	
Chrysene	410	ug/kg	18	1		04/18/17	04/19/17 17:39	1055	
Dibenz(a,h)Anthracene	79	ug/kg	18	1		04/18/17	04/19/17 17:39	1055	
Dibenzofuran	ND	ug/kg	180	1		04/18/17	04/19/17 17:39	1055	
3,3-Dichlorobenzidine	ND	ug/kg	180	1		04/18/17	04/19/17 17:39	1055	
2,4-Dichlorophenol	ND	ug/kg	180	1		04/18/17	04/19/17 17:39	1055	

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS No: 17041412

GTA - Abingdon, Abingdon, MD April 21, 2017

Sample ID: GTA-N+W	Date/Time Sampled:			04/14/2017 12:00		PSS Sample ID: 17041412-003			
Matrix: SOIL	Ι	Date/Time	Received:	04/14/201	17 12:50	% S	olids: 90		
TCL Semivolatile Organic Compounds	Analytica	I Method: S	SW-846 8270	С	F	Preparation Meth	nod: SW3550C		
	Result	Units	RL	Flag D	il	Prepared	Analyzed	Analys	
Diethyl phthalate	ND	ug/kg	180		1	04/18/17	04/19/17 17:39	1055	
Dimethyl phthalate	ND	ug/kg	180		1	04/18/17	04/19/17 17:39	1055	
2,4-Dimethylphenol	ND	ug/kg	180		1	04/18/17	04/19/17 17:39	1055	
4,6-Dinitro-2-methyl phenol	ND	ug/kg	180		1	04/18/17	04/19/17 17:39	1055	
2,4-Dinitrophenol	ND	ug/kg	370		1	04/18/17	04/19/17 17:39	1055	
2,4-Dinitrotoluene	ND	ug/kg	180		1	04/18/17	04/19/17 17:39	1055	
2,6-Dinitrotoluene	ND	ug/kg	180		1	04/18/17	04/19/17 17:39	1055	
Fluoranthene	680	ug/kg	18		1	04/18/17	04/19/17 17:39	1055	
Fluorene	22	ug/kg	18		1	04/18/17	04/19/17 17:39	1055	
Hexachlorobenzene	ND	ug/kg	180		1	04/18/17	04/19/17 17:39	1055	
Hexachlorobutadiene	ND	ug/kg	180		1	04/18/17	04/19/17 17:39	1055	
Hexachlorocyclopentadiene	ND	ug/kg	180		1	04/18/17	04/19/17 17:39	1055	
Hexachloroethane	ND	ug/kg	180		1	04/18/17	04/19/17 17:39	1055	
Indeno(1,2,3-c,d)Pyrene	350	ug/kg	18		1	04/18/17	04/19/17 17:39	1055	
Isophorone	ND	ug/kg	180		1	04/18/17	04/19/17 17:39	1055	
2-Methylnaphthalene	29	ug/kg	18		1	04/18/17	04/19/17 17:39	1055	
2-Methyl phenol	ND	ug/kg	180		1	04/18/17	04/19/17 17:39	1055	
3&4-Methylphenol	ND	ug/kg	180		1	04/18/17	04/19/17 17:39	1055	
Naphthalene	85	ug/kg	18		1	04/18/17	04/19/17 17:39	1055	
2-Nitroaniline	ND	ug/kg	180		1	04/18/17	04/19/17 17:39	1055	
3-Nitroaniline	ND	ug/kg	180		1	04/18/17	04/19/17 17:39	1055	
4-Nitroaniline	ND	ug/kg	180		1	04/18/17	04/19/17 17:39	1055	
Nitrobenzene	ND	ug/kg	180		1	04/18/17	04/19/17 17:39	1055	
2-Nitrophenol	ND	ug/kg	180		1	04/18/17	04/19/17 17:39	1055	
4-Nitrophenol	ND	ug/kg	180		1	04/18/17	04/19/17 17:39	1055	
N-Nitrosodi-n-propyl amine	ND	ug/kg	180		1	04/18/17	04/19/17 17:39	1055	
N-Nitrosodiphenylamine	ND	ug/kg	180		1	04/18/17	04/19/17 17:39	1055	
Di-n-octyl phthalate	ND	ug/kg	180		1	04/18/17	04/19/17 17:39	1055	
Pentachlorophenol	ND	ug/kg	180		1	04/18/17	04/19/17 17:39	1055	
Phenanthrene	270	ug/kg	18		1	04/18/17	04/19/17 17:39	1055	

PHASE SEPARATION SCIENCE, INC.

CERTIFICATE OF ANALYSIS No: 17041412

GTA - Abingdon, Abingdon, MD April 21, 2017

[Date/Tim Date/Tim	e Sampled: e Received:	04/14/2 04/14/2	2017 12:00 2017 12:50	e ID: 17041412 olids: 90	2-003	
Analytica	I Method:	SW-846 8270	С		Preparation Meth	od: SW3550C	
Result	Units	RL	Flag	Dil	Prepared	Analyzed	Analyst
ND	ug/kg	180		1	04/18/17	04/19/17 17:39	1055
580	ug/kg	18		1	04/18/17	04/19/17 17:39	1055
ND	ug/kg	180		1	04/18/17	04/19/17 17:39	1055
ND	ug/kg	180		1	04/18/17	04/19/17 17:39	1055
ND	ug/kg	180		1	04/18/17	04/19/17 17:39	1055
	CAnalytica Result ND 580 ND ND ND ND	Date/Tim Date/Tim Analytical Method: Result Units ND ug/kg 580 ug/kg ND ug/kg	Date/Time Sampled:Date/Time Received:Date/Time Received:Analytical Method: SW-846 8270ResultUnitsRLNDug/kg180580ug/kg18NDug/kg180NDug/kg180NDug/kg180NDug/kg180NDug/kg180NDug/kg180NDug/kg180	Date/Time Sampled: 04/14/2 Date/Time Received: 04/14/2 Date/Time Received: 04/14/2 Analytical Method: SW-846 8270 C Result Units RL Flag ND ug/kg 180 180 ND ug/kg 180 180 ND ug/kg 180 180 ND ug/kg 180 180 ND ug/kg 180 180	Date/Time Sampled: 04/14/2017 12:00 Date/Time Received: 04/14/2017 12:50 Date/Time Received: 04/14/2017 12:50 Analytical Method: SW-846 8270 C Result Units RL Flag Dil ND ug/kg 180 1 ND ug/kg 180 1 ND ug/kg 180 1 ND ug/kg 180 1 ND ug/kg 180 1	Date/Time Sampled: 04/14/2017 12:00 PSS Sample Date/Time Received: 04/14/2017 12:50 % S Analytical Method: SW-846 8270 C Preparation Meth Result Units RL Flag Dil Prepared ND ug/kg 180 1 04/18/17 580 ug/kg 180 1 04/18/17 ND ug/kg 180 1 04/18/17	Date/Time Sampled: 04/14/2017 12:00 PSS Sample ID: 17041412 Date/Time Received: 04/14/2017 12:50 % Solids: 90 Analytical Method: SW-846 8270 C Preparation Method: SW3550C Result Units RL Flag Dil Prepared Analyzed ND ug/kg 180 1 04/18/17 04/19/17 17:39 04/19/17 17:39 ND ug/kg 180 1 04/18/17 04/19/17 17:39

Case Narrative Summary

Client Name: GTA - Abingdon

Project Name: 37162082

Work Order Number(s): 17041412 Project ID: 31162082

Any holding time exceedances, deviations from the method specifications, regulatory requirements or variations to the procedures outlined in the PSS Quality Assurance Manual are outlined below.

The analyses of chlorine, pH, dissolved oxygen, temperature and sulfite for drinking water and non-potable samples tested for compliance have a maximum holding time of 15 minutes. As such, all laboratory analyses for these analytes exceed holding times.

Matrix spike and matrix spike duplicate analyses may not be performed due to insufficient sample quantity. In these instances, a laboratory control sample and laboratory control sample duplicate are analyzed unless otherwise noted or specified in the method.

Sample Receipt:

All sample receipt conditions were acceptable.

NELAP accreditation was held for all analyses performed unless noted below. See www.phaseonline.com for complete PSS scope of accreditation.

Analytical Data Package Information Summary

REAL PROVIDENCE OF THE STATE

Work Order(s): 17041412 Report Prepared For: GTA - Abingdon, Abingdon, MD Project Name: 37162082 Project Manager: Ben Myers

Method	Client Sample Id	Analysis Type	Lab Sample Id	Analyst	Mtx	Prep Batch	Analytical Batch	Sampled	Prepared	Analyzed
SM2540G	GTA-SE	Initial	17041412-001	1061	S	141741	141741	04/14/2017	04/18/2017 12:25	04/18/2017 12:25
	GTA-SW	Initial	17041412-002	1061	S	141741	141741	04/14/2017	04/18/2017 12:25	04/18/2017 12:25
	GTA-N+W	Initial	17041412-003	1061	S	141741	141741	04/14/2017	04/18/2017 12:25	04/18/2017 12:25
SW-846 6020 A	GTA-SE	Initial	17041412-001	1033	S	65724	141786	04/14/2017	04/18/2017 10:34	04/18/2017 19:52
	GTA-SW	Initial	17041412-002	1033	S	65724	141786	04/14/2017	04/18/2017 10:34	04/18/2017 19:59
	GTA-N+W	Initial	17041412-003	1033	S	65724	141786	04/14/2017	04/18/2017 10:34	04/18/2017 20:31
	65724-1-BKS	BKS	65724-1-BKS	1033	S	65724	141786		04/18/2017 10:34	04/18/2017 17:48
	65724-1-BLK	BLK	65724-1-BLK	1033	S	65724	141786		04/18/2017 10:34	04/18/2017 17:42
	F-1 (S-1&S-2) S	MS	17041230-001 S	1033	S	65724	141786	04/11/2017	04/18/2017 10:34	04/18/2017 18:01
	F-1 (S-1&S-2) SD	MSD	17041230-001 SD	1033	S	65724	141786	04/11/2017	04/18/2017 10:34	04/18/2017 18:08
	GTA-SE	Reanalysis	17041412-001	1033	S	65724	141816	04/14/2017	04/18/2017 10:34	04/19/2017 18:19
	GTA-SW	Reanalysis	17041412-002	1033	S	65724	141816	04/14/2017	04/18/2017 10:34	04/19/2017 18:25
	GTA-N+W	Reanalysis	17041412-003	1033	S	65724	141816	04/14/2017	04/18/2017 10:34	04/19/2017 18:58
SW-846 7196 A	GTA-SE	Initial	17041412-001	1053	S	65734	141795	04/14/2017	04/18/2017 14:18	04/19/2017 13:40
	GTA-SW	Initial	17041412-002	1053	S	65734	141795	04/14/2017	04/18/2017 14:18	04/19/2017 13:43
	GTA-N+W	Initial	17041412-003	1053	S	65734	141795	04/14/2017	04/18/2017 14:18	04/19/2017 13:46
	65734-1-BKS	BKS	65734-1-BKS	1053	S	65734	141795		04/18/2017 14:18	04/19/2017 13:19
	65734-1-BLK	BLK	65734-1-BLK	1053	S	65734	141795		04/18/2017 14:18	04/19/2017 13:17
	65734-1-BSD	BSD	65734-1-BSD	1053	S	65734	141795		04/18/2017 14:18	04/19/2017 13:21
	C-1 D	MD	17041314-001 D	1053	S	65734	141795	04/01/2017	04/18/2017 14:18	04/19/2017 13:29
	C-1 S	MS	17041314-001 S	1053	S	65734	141795	04/01/2017	04/18/2017 14:18	04/19/2017 13:32
SW-846 8015 C	GTA-N+W	Initial	17041412-003	1059	S	65752	141851	04/14/2017	04/19/2017 14:09	04/20/2017 18:42
	GTA-SE	Initial	17041412-001	1059	S	65752	141852	04/14/2017	04/19/2017 14:09	04/20/2017 18:17
	65752-1-BKS	BKS	65752-1-BKS	1059	S	65752	141852		04/19/2017 14:09	04/20/2017 16:38
	65752-1-BLK	BLK	65752-1-BLK	1059	S	65752	141852		04/19/2017 14:09	04/20/2017 16:14
	65752-1-BSD	BSD	65752-1-BSD	1059	S	65752	141852		04/19/2017 14:09	04/20/2017 17:03
	12631-DISP-9-4/13/17 S	MS	17041418-002 S	1059	S	65752	141876	04/13/2017	04/19/2017 14:09	04/21/2017 09:58

Analytical Data Package Information Summary

Work Order(s): 17041412 Report Prepared For: GTA - Abingdon, Abingdon, MD Project Name: 37162082 Project Manager: Ben Myers

Method	Client Sample Id	Analysis Type	Lab Sample Id	Analyst	Mtx	Prep Batch	Analytical Batch	Sampled	Prepared	Analyzed
SW 946 9015 C	12631 DISD 0 4/13/17	MSD	170/1/18 002 5D	1050	S	65752	1/1876	04/13/2017	04/10/2017 14.00	04/21/2017 10:23
5 W -040 0015 C	SD	MBD	17041418-002 SD	1059	3	03732	141870	04/13/2017	04/19/2017 14.09	04/21/2017 10.23
	GTA-SW	Initial	17041412-002	1059	S	65752	141877	04/14/2017	04/19/2017 14:09	04/21/2017 10:23
SW-846 8082 A	GTA-SE	Initial	17041412-001	1029	S	65700	141780	04/14/2017	04/17/2017 10:25	04/18/2017 17:48
	GTA-SW	Initial	17041412-002	1029	S	65700	141780	04/14/2017	04/17/2017 10:25	04/18/2017 18:16
	GTA-N+W	Initial	17041412-003	1029	S	65700	141780	04/14/2017	04/17/2017 10:25	04/18/2017 18:44
	65700-1-BKS	BKS	65700-1-BKS	1029	S	65700	141780		04/17/2017 10:25	04/18/2017 12:10
	65700-1-BLK	BLK	65700-1-BLK	1029	S	65700	141780		04/17/2017 10:25	04/18/2017 11:42
	65700-1-BSD	BSD	65700-1-BSD	1029	S	65700	141780		04/17/2017 10:25	04/18/2017 12:37
	GTA-SE S	MS	17041412-001 S	1029	S	65700	141780	04/14/2017	04/17/2017 10:25	04/18/2017 13:06
	GTA-SE SD	MSD	17041412-001 SD	1029	S	65700	141780	04/14/2017	04/17/2017 10:25	04/18/2017 13:34
SW-846 8270 C	65716-1-BKS	BKS	65716-1-BKS	1055	S	65716	141815		04/18/2017 08:22	04/19/2017 01:11
	65716-1-BLK	BLK	65716-1-BLK	1055	S	65716	141815		04/18/2017 08:22	04/19/2017 00:41
	65716-1-BSD	BSD	65716-1-BSD	1055	S	65716	141815		04/18/2017 08:22	04/19/2017 01:41
	Post Ex3 Stairs S	MS	17041401-003 S	1055	S	65716	141815	04/13/2017	04/18/2017 08:22	04/19/2017 02:11
	Post Ex3 Stairs SD	MSD	17041401-003 SD	1055	S	65716	141815	04/13/2017	04/18/2017 08:22	04/19/2017 02:41
	GTA-SE	Initial	17041412-001	1055	S	65716	141856	04/14/2017	04/18/2017 08:22	04/19/2017 15:40
	GTA-SW	Initial	17041412-002	1055	S	65716	141856	04/14/2017	04/18/2017 08:22	04/19/2017 16:40
	GTA-N+W	Initial	17041412-003	1055	S	65716	141856	04/14/2017	04/18/2017 08:22	04/19/2017 17:39

GTA - Abingdon 37162082

Analytical Method Seq Number: PSS Sample ID:	J: SW-846 8082 A 141780 17041412-001		Matrix:	Soil		Prep Method: Date Prep:	SW3550C 04/17/2017
Surrogate		%Rec	Flag		Limits	Units	Analysis Date
Decachlorobiphen Tetrachloro-m-xyle	yl ene	85 69			61-150 42-142	% %	04/18/17 17:48 04/18/17 17:48
Analytical Methoo Seq Number:	d: SW-846 8015 C 141852		Matrix:	Soil		Prep Method: Date Prep:	SW3550C 04/19/2017
PSS Sample ID: Surrogate	17041412-001	%Rec	Flag		Limits	Units	Analysis Date
o-Terphenyl		88			34-133	%	04/20/17 18:17
Analytical Method	J: SW-846 8270 C 141856		Matrix:	Soil		Prep Method: Date Prep	SW3550C 04/18/2017
PSS Sample ID:	17041412-001		indink.	0011		Date Prop.	01/10/2011
Surrogate		%Rec	Flag		Limits	Units	Analysis Date
2-Fluorobiphenyl		88			32-107	%	04/19/17 15:40
2-Fluorophenol		75			34-113	%	04/19/17 15:40
Nitrobenzene-d5		78			35-123	%	04/19/17 15:40
Phenol-d6		78			34-120	%	04/19/17 15:40
Terphenyl-D14		98			46-154	%	04/19/17 15:40
2,4,6-Tribromophe	nol	98			31-113	%	04/19/17 15:40

Analytical Method:	: SW-846 8082 A				Prep Method: SW35				
Seq Number:	141780		Matrix: Soil	l	Date Prep	: 04/17/2017			
PSS Sample ID: 17041412-002									
Surrogate		%Rec	Flag	Limits	Units	Analysis Date			
Decachlorobipheny	l	92		61-150	%	04/18/17 18:16			
Tetrachloro-m-xylene		69		42-142	%	04/18/17 18:16			

GTA - Abingdon 37162082

Analytical Method:	SW-846 8270 C				Prep Method	SW3550C
Seq Number:	141856		Matrix: Soil		Date Prep	04/18/2017
PSS Sample ID:	17041412-002				·	
		%Rec	Flag	Limits	Units	Analysis
Surrogate			i idg	Linita	onno	Date
2-Fluorobiphenyl		90		32-107	%	04/19/17 16:40
2-Fluorophenol		75		34-113	%	04/19/17 16:40
Nitrobenzene-d5		79		35-123	%	04/19/17 16:40
Phenol-d6		78		34-120	%	04/19/17 16:40
Terphenyl-D14		107		46-154	%	04/19/17 16:40
2,4,6-Tribromophen	ol	101		31-113	%	04/19/17 16:40
Analytical Method:	SW-846 8015 C				Prep Method	SW3550C
Seq Number:	141877		Matrix: Soil		Date Prep	04/19/2017
PSS Sample ID:	17041412-002					
Surrogate		%Rec	Flag	Limits	Units	Analysis Date
o-Terphenyl		91		34-133	%	04/21/17 10:23
Analytical Method:	SW-846 8082 A				Prep Method	SW3550C
Seq Number:	141780		Matrix: Soil		Date Prep	04/17/2017
PSS Sample ID:	17041412-003					
Surrogate		%Rec	Flag	Limits	Units	Analysis Date
Decachlorobiphenyl		96		61-150	%	04/18/17 18:44
Tetrachloro-m-xylen	e	64		42-142	%	04/18/17 18:44
Analytical Method:	SW-846 8015 C				Prep Method	SW3550C
Seq Number:	141851		Matrix: Soil		Date Prep	04/19/2017
PSS Sample ID:	17041412-003					
Surrogate		%Rec	Flag	Limits	Units	Analysis Date

111

o-Terphenyl

34-133

%

04/20/17 18:42

GTA - Abingdon 37162082

Analytical	Method:	SW-846	8270 C
------------	---------	--------	--------

Analytical Method:	SW-846 8270 C				Prep Me	thod: SW3550C
Seq Number:	141856		Matrix: So	Date	Prep: 04/18/2017	
PSS Sample ID:	17041412-003					
Surrogate		%Rec	Flag	Limits	Units	Analysis Date
2-Fluorobiphenyl		95		32-107	%	04/19/17 17:39
2-Fluorophenol		80		34-113	%	04/19/17 17:39
Nitrobenzene-d5		83		35-123	%	04/19/17 17:39
Phenol-d6		83		34-120	%	04/19/17 17:39
Terphenyl-D14		114		46-154	%	04/19/17 17:39
2,4,6-Tribromophen	ol	109		31-113	%	04/19/17 17:39

F = RPD exceeded the laboratory control limits X = Recovery of MS, MSD or both outside of QC Criteria H= Recovery of BS, BSD or both exceeded the laboratory control limits

L = Recovery of BS,BSD or both below the laboratory control limits

GTA - Abingdon 37162082

Analytical Method: SW-846 6020 A

Seq Number:	141786			Matrix:	Solid	Date Prep: 04/18/17				
MB Sample Id:	65724-1-BLK		LCS San	nple Id:	65724-1-BKS					
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	Limits	Units	Analysis Flag Date			
Antimony	<1.767	14.14	15.35	109	80-120	mg/kg	04/18/17 17:48			
Arsenic	<0.3534	14.14	14.01	99	80-120	mg/kg	04/18/17 17:48			
Beryllium	<1.767	14.14	12.58	89	80-120	mg/kg	04/18/17 17:48			
Cadmium	<1.767	14.14	14.03	99	80-120	mg/kg	04/18/17 17:48			
Chromium	<1.767	14.14	13.85	98	80-120	mg/kg	04/18/17 17:48			
Copper	<1.767	14.14	13.53	96	80-120	mg/kg	04/18/17 17:48			
Lead	<1.767	14.14	15.19	107	80-120	mg/kg	04/18/17 17:48			
Mercury	<0.07069	0.3534	0.3640	103	80-120	mg/kg	04/18/17 17:48			
Nickel	<1.767	14.14	13.91	98	80-120	mg/kg	04/18/17 17:48			
Selenium	<1.767	14.14	16.00	113	80-120	mg/kg	04/18/17 17:48			
Silver	<1.767	14.14	14.22	101	80-120	mg/kg	04/18/17 17:48			
Thallium	<1.414	14.14	13.08	93	80-120	mg/kg	04/18/17 17:48			
Zinc	<7.069	70.69	66.34	94	80-120	mg/kg	04/18/17 17:48			

Analytical Method: SW-846 6020 A

Seq Number:	141816			Matrix:	Solid	Date Prep: 04/18/17				
REBLK Sample Id:	65724-1-BLK		LCS Sar	nple Id:	65724-1-BKS					
Parameter	REBLK Result	Spike Amount	LCS Result	LCS %Rec		Limits	Units	Analysis Date	Flag	
Antimony	<1.767	14.14	15.36	109		75-125	mg/kg	04/19/17 16:47		
Arsenic	<0.3534	14.14	14.48	102		75-125	mg/kg	04/19/17 16:47		
Beryllium	<1.767	14.14	13.14	93		75-125	mg/kg	04/19/17 16:47		
Cadmium	<1.767	14.14	13.88	98		75-125	mg/kg	04/19/17 16:47		
Chromium	<1.767	14.14	13.97	99		75-125	mg/kg	04/19/17 16:47		
Copper	<1.767	14.14	13.60	96		75-125	mg/kg	04/19/17 16:47		
Lead	<1.767	14.14	14.89	105		75-125	mg/kg	04/19/17 16:47		
Mercury	<0.07069	0.3534	0.3393	96		75-125	mg/kg	04/19/17 16:47		
Nickel	<1.767	14.14	15.52	110		75-125	mg/kg	04/19/17 16:47		
Selenium	<1.767	14.14	11.92	84		75-125	mg/kg	04/19/17 16:47		
Silver	<1.767	14.14	13.44	95		75-125	mg/kg	04/19/17 16:47		
Thallium	<1.414	14.14	12.97	92		75-125	mg/kg	04/19/17 16:47		
Zinc	<7.069	14.14	60.72	429		75-125	mg/kg	04/19/17 16:47	Н	

Analytical Method:	SW-846 7196 A							Pre	p Metho	d: SW	3060A	
Seq Number:	141795			Matrix:	Solid			I	Date Pre	p: 04/ [,]	18/17	
MB Sample Id:	65734-1-BLK		LCS Sam	nple Id:	65734-1-	BKS		LCSD	Sample	ld: 657	34-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Chromium, Hexavalent	<1.011	5.055	4.713	93	4.493	91	80-120	5	20	mg/kg	04/19/17 13:19	

Prep Method: SW3050B

Prep Method: SW3050B

GTA - Abingdon 37162082

Analytical	Method:	SW-846	8082 A
------------	---------	--------	--------

Analytical Method:	SW-846 8082 A							Pre	ep Metho	od: SW	3550C	
Seq Number:	141780			Matrix:	Solid				Date Pre	ep: 04/ ⁻	17/17	
MB Sample Id:	65700-1-BLK		LCS San	nple Id:	65700-1-	BKS		LCSD	Sample	eld: 657	'00-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
PCB-1016	<0.05076	0.5076	0.4031	79	0.4189	85	60-110	4	25	mg/kg	04/18/17 12:10	
PCB-1260	<0.05076	0.5076	0.3568	70	0.3753	76	60-98	5	25	mg/kg	04/18/17 12:10	
Surrogate	MB %Rec	MB Flag	L Re	CS sult	LCS Flag	LCS Resu	D LCS It Flag	D Li g	mits	Units	Analysis Date	
Decachlorobiphenyl	103		1	00		105		61	-150	%	04/18/17 12:10)
Tetrachloro-m-xylene	84		8	34		87		42	2-142	%	04/18/17 12:10)

Analytical Method:	SW-846 8082 A							Pre	ep Metho	od: SW	3550C	
Seq Number:	141780			Matrix:	Soil	Soil Date Prep:					17/17	
Parent Sample Id:	17041412-001		MS San	MS Sample Id: 17041412-001 S			MSD Sample Id:			41412-001 SD		
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
PCB-1016	<0.05612	0.5612	0.4064	72	0.4093	72	45-130	1	30	mg/kg	04/18/17 13:06	
PCB-1260	<0.05612	0.5612	0.3335	59	0.3544	62	30-125	6	30	mg/kg	04/18/17 13:06	
Surrogate			l Re	MS sult	MS Flag	MSI Resu) MSI It Flag	D Li g	mits	Units	Analysis Date	
Decachlorobiphenyl			:	86		82		61	-150	%	04/18/17 13:06	5
Tetrachloro-m-xylene			;	81		80		42	2-142	%	04/18/17 13:06	5

Analytical Method:	SW-846 8	015 C							Pre	ep Metho	od: SW	3550C	
Seq Number:	141852				Matrix:	Solid				Date Pre	ep: 04/	19/17	
MB Sample Id:	65752-1-B	LK		LCS Sam	nple Id:	65752-1-	BKS		LCSD	Sample	ld: 657	52-1-BSD	
Parameter		MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
TPH-DRO (Diesel Range	Organics)	<9.843	32.81	26.60	81	30.88	92	54-123	15	25	mg/kg	04/20/17 16:38	
Surrogate		MB %Rec	MB Flag	L Re	CS sult	LCS Flag	LCS Resu	D LCS It Flag	D Li	mits	Units	Analysis Date	
o-Terphenyl		74		8	33		98		34	-133	%	04/20/17 16:38	3

GTA - Abingdon 37162082

Analytical Method: SW-846 8270 C

Analytical Method: SW-846 8270 C								Pre	p Metho	od: SW	/3550C	
Seq Number:	141815			Matrix:	Solid				Date Pre	ep: 04/	18/17	
MB Sample Id:	65716-1-BLK		LCS Sar	nple Id:	65716-1-	BKS		LCSD	Sample	d: 657	′16-1-BSD	
Parameter	ME Resul	8 Spike t Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Acenaphthene	<16.6	1 1329	1278	96	1276	96	60-116	0	25	ug/kg	04/19/17 01:11	
Acenaphthylene	<16.6	1 1329	1275	96	1291	97	61-112	1	25	ug/kg	04/19/17 01:11	
Acetophenone	<166.	1 1329	1108	83	1119	84	57-114	1	25	ug/kg	04/19/17 01:11	
Anthracene	<16.6	1 1329	1243	94	1255	94	66-115	1	25	ug/kg	04/19/17 01:11	
Atrazine	<166.	1 1329	1305	98	1312	99	7-109	1	25	ug/kg	04/19/17 01:11	
Benzo(a)anthracene	<16.6	1 1329	1294	97	1345	101	71-113	4	25	ug/kg	04/19/17 01:11	
Benzo(a)pyrene	<16.6	1 1329	1229	92	1259	95	69-118	2	25	ua/ka	04/19/17 01:11	
Benzo(b)fluoranthene	<16.6	1 1329	1143	86	1275	96	65-126	11	25	ua/ka	04/19/17 01:11	
Benzo(g,h,i)perylene	<16.6	1 1329	1225	92	1249	94	69-112	2	25	ug/kg	04/19/17 01:11	
Benzo(k)fluoranthene	<16.6	1 1329	1219	92	1347	101	57-129	10	25	ug/kg	04/19/17 01:11	
Biphenyl (Diphenyl)	<166.	1 1329	1188	89	1161	87	62-117	2	25	ug/kg	04/19/17 01:11	
Butyl benzyl phthalate	<166.	1 1329	1262	95	1304	98	81-111	3	25	ug/kg	04/19/17 01:11	
bis(2-chloroethoxy) me	ethane <166.	1 1329	1123	84	1133	85	56-119	1	25	ua/ka	04/19/17 01:11	
bis(2-chloroethyl) ethe	r <166.	1 1329	1079	81	1094	82	55-107	1	25	ua/ka	04/19/17 01:11	
bis(2-chloroisopropyl)	ether <166.	1 1329	1053	79	1054	79	44-103	0	25	ua/ka	04/19/17 01:11	
bis(2-ethylhexyl) phtha	late <166.	1 1329	1277	96	1318	99	84-109	3	25	ua/ka	04/19/17 01:11	
4-Bromophenylphenyl	ether <166.	1 1329	1182	89	1212	91	63-125	3	25	ua/ka	04/19/17 01:11	
Di-n-butyl ohthalate	<166.	1 1329	1253	94	1255	94	76-110	0	25	ua/ka	04/19/17 01:11	
Carbazole	<166	1 1329	1727	130	1780	134	58-133	3	25	ua/ka	04/19/17 01.11	н
Caprolactam	<166	1 1329	1272	96	1264	95	51-122	1	25	ug/kg	04/19/17 01:11	
4-Chloro-3-methyl nhe	nol <166	1 1329	1209	91	1236	93	74-119	2	25	ug/kg	04/19/17 01:11	
4-Chloroaniline	<166	1 1329	1154	87	1196	90	45-107	4	25	ug/kg	04/19/17 01:11	
2-Chloronanhthalene	<166	1 1329	1248	0/ Q/	1256	94	56-113	1	25	ug/kg	04/19/17 01:11	
2-Chlorophenol	<166	1 1329	1087	82	1/00	83	50-113	1	25	ug/kg	04/19/17 01:11	
4-Chlorophenyl Pheny	<166.	1 1329	1251	94	1275	96	62-111	2	25	ug/kg	04/19/17 01:11	
Chrysene	<16 G	1 1329	1215	91	1273	94	72-114	2	25	ug/kg	04/19/17 01:11	
Dibenz(a h)Anthracen	≤16.6 ≤16.6	1 1329	1261	95	1204	97	72-110	2	25	ug/kg	04/19/17 01:11	
Dibenzofuran	<166	1 1329	1263	95	1280	96	62-118	1	25	ug/kg	04/19/17 01:11	
3 3-Dichlorobenzidine	<166	1 1329	1674	126	1765	133	66-141	5	25	ug/kg	04/19/17 01:11	
2 4-Dichlorophenol	<166	1 1329	1088	82	1111	83	68-118	2	25	ug/kg	04/19/17 01:11	
Diethyl obthalate	<166	1 1329	1203	97	1333	100	61-113	3	25	ug/kg	04/19/17 01:11	
Dimethyl phthalate	<166	1 1329	1200	98	1350	100	69-109	3	25	ug/kg	04/19/17 01:11	
2 4-Dimethylphenol	<166	1 1329	1130	85	1172	88	57-122	4	25	ug/kg	04/19/17 01:11	
4 6-Dinitro-2-methyl ph	<100. <166	1 1320	1114	84	1100	80	50-134	7	25	ug/kg	04/19/17 01:11	
2 4-Dinitrophenol	<332	2 1329	969.8	73	1109	83	24-144	, 13	25	ug/kg	04/19/17 01:11	
2 4-Dinitrotoluene	<166	1 1329	1369	103	1423	107	61-124	4	25	ug/kg	04/19/17 01:11	
2,4 Dinitrotoluene	<166	1 1320	1357	103	1306	107	59-124	3	25	ug/kg	04/19/17 01:11	
Fluoranthene	<16.6	1 1320	1230	02	1230	100	60-110	1	25	ug/kg	04/19/17 01:11	
Fluorene	<16.6	1 1329	1250	95	1235	33 07	65-115	2	25	ug/kg	04/19/17 01:11	
Hevachlorobenzene	<166	1 1329	1200	33	1203	97	63-118	2	25	ug/kg	04/19/17 01:11	
Hexachlorobutadiene	<166	1 1329	1171	92	1167	88	55-120	4	25	ug/kg	04/19/17 01:11	
Hexachlorocyclopenta	<100.	1 1329	1446	100	1537	115	20-120	6	25	ug/kg	04/19/17 01:11	
Hexachloroethane	<pre>diene <100.</pre>	1 1329	1140	86	1130	86	54-110	0	25	ug/kg	04/19/17 01:11	
Indeno(1,2,3-c,d)Pyrer	<166	1 1320	12/6	00	120/	00	60-127	1	25	ug/kg	04/10/17 01:11	
Isophorope	<10.0	1 1320	115/	87	1165	88	57-116	1	25	ug/kg	04/10/17 01:11	
2 Mothylpaphthalono	<16.6	1 1329	11/5	96	1122	95	70 100	1	25	ug/kg	04/10/17 01:11	
2-Methyl phonol	~10.0	1 1229	1007	00	1100	00	50-109	י ר	25	ug/kg	04/10/17 01.11	
	<100.	1 1029 1 1000	1097	03	1119	04 02	50 110	∠ ۱	20	ug/kg	04/13/17 01.11	
Nanhthalana	<100.	1 1029 1 1000	1094	02 05	1100	03	50 100	і 0	20	ug/kg	04/13/17 01.11	
2 Nitroaniling	<10.0	1 1029 1 1000	1125	C0	1120	CO 100	51 140	5	20	ug/kg	04/19/17 01:11	
	<100.	1 1329 1 1300	1310	99 405	13/1	103	51-110	5 6	20 25	ug/kg	04/19/17 01:11	
s-microaniline	<166.	1 1329	1392	105	1473	111	57-111	ю	25	ug/Kg	04/19/17 01:11	

GTA - Abingdon 37162082

Analytical Method: SW-846 8270 C

Analytical Metho	d: SW-846	8270 C							Pre	p Metho	od: SW	3550C	
Seq Number:	141815				Matrix:	Solid				Date Pre	ep: 04/	18/17	
MB Sample Id:	65716-1-	BLK		LCS Sam	ple Id:	65716-1-	BKS		LCSD	Sample	ld: 657	′16-1-BSD	
Parameter		MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
4-Nitroaniline		<166.1	1329	1630	123	1721	129	55-125	5	25	ug/kg	04/19/17 01:11	н
Nitrobenzene		<166.1	1329	1136	85	1140	86	53-110	0	25	ug/kg	04/19/17 01:11	
2-Nitrophenol		<166.1	1329	1126	85	1150	86	58-124	2	25	ug/kg	04/19/17 01:11	
4-Nitrophenol		<166.1	1329	1150	87	1207	91	51-116	5	25	ug/kg	04/19/17 01:11	
N-Nitrosodi-n-propyl	amine	<166.1	1329	1161	87	1161	87	60-98	0	25	ug/kg	04/19/17 01:11	
N-Nitrosodiphenylam	nine	<166.1	1329	1199	90	1233	93	65-111	3	25	ug/kg	04/19/17 01:11	
Di-n-octyl phthalate		<166.1	1329	1233	93	1280	96	69-120	4	25	ug/kg	04/19/17 01:11	
Pentachlorophenol		<166.1	1329	1076	81	1101	83	56-124	2	25	ug/kg	04/19/17 01:11	
Phenanthrene		<16.61	1329	1176	88	1192	90	67-117	1	25	ug/kg	04/19/17 01:11	
Phenol		<166.1	1329	1044	79	1073	81	58-114	3	25	ug/kg	04/19/17 01:11	
Pyrene		<16.61	1329	1187	89	1228	92	77-111	3	25	ug/kg	04/19/17 01:11	
Pyridine		<166.1	1329	1010	76	1033	78	37-110	2	25	ug/kg	04/19/17 01:11	
2,4,5-Trichloropheno	bl	<166.1	1329	1282	96	1331	100	64-114	4	25	ug/kg	04/19/17 01:11	
2,4,6-Trichloropheno	ol	<166.1	1329	1214	91	1265	95	60-125	4	25	ug/kg	04/19/17 01:11	
Surrogate		MB %Rec	MB Flag	L Re:	CS sult	LCS Flag	LCS Resu	D LCS It Flag	D Li J	mits	Units	Analysis Date	
2-Fluorobiphenyl		98		ç	97		98		32	-107	%	04/19/17 01:11	
2-Fluorophenol		96		8	34		85		34	-113	%	04/19/17 01:11	
Nitrobenzene-d5		95		8	39		89		35	-123	%	04/19/17 01:11	
Phenol-d6		86		8	33		86		34	-120	%	04/19/17 01:11	
Terphenyl-D14		100		1	06		107	,	46	-154	%	04/19/17 01:11	
2,4,6-Tribromophene	bl	102		1	09		112	2	31	-113	%	04/19/17 01:11	

F = RPD exceeded the laboratory control limits

X = Recovery of MS, MSD or both outside of QC Criteria H= Recovery of BS,BSD or both exceeded the laboratory control limits

L = Recovery of BS,BSD or both below the laboratory control limits

A ANY	S	NMPLE	CH	AIN C	FC	JSTC	DY/AGREEMENT F	ORM	
BUNNUS	CONCE PHASE	SEPAR.	ATION	I SCIE	NCE, I	NC.		www.phaseonline.c email: info@phaseonline.c	n.com
U*CLIENT:	GTO	*OFFIC	ELOC. Q	bingd	00	PSS Work	:order #: 17041412	PAGE 1 OF 1	
*PROJECT	MGR: BED MUE	CS *PHON	E NO.: (4 K	1515-6	Splag	Matrix Code SW=Surface	s: • Wir DW=Drinking Wir GW=Ground Wir WW=Waste Wir	0=0il S=Soil L=Liquid SOL=Solid A=Air WI=Wip	Vipe
EMAIL:	2mvecs@ak	, Eng' FAX NO	-	-		δ S O O S	MPLE Used		
*PROJEC1	NAME: 311630	282	PRO.	JECT NO.	8009118		YPE Method S / / / / / /	11111	
SITE LOCA	SWALFOUN: SPACFOUND	Point	P.O.4	: ON		- ŏ - < -	OMP () / 2/ 1/ / 2/ /	1111	
SAMPLER(s): JLV		DW CERT N	: 07		ZШ	3= * / x/ x 0/0/4/	/////	
LAB NO.	*SAMPLE IDENTIF	ICATION	*DATE (SAMPLED)	*TIME (SAMPLED)	MATRIX (See Codes)	œν	मुखे रोगे।	/ / / / REMARKS	
1	6-Ta-5E		4/14/17	0011	5	d			
d	GTQ-5W		414/17	1130	5	cb	C XXXXX		
3	6-TO-N+1	2	4 14/17	0000	5	6	C XXXXX		
			-						
					-				
	-								
Relinquishe	M 10 (1)	Date	Time	Received E	34: 1		*Requested TAT (One TAT per COC)	# of Coolers: 1	
101	Noul	111411	1250	the	n Cr.	R	Next Day Emergency Other	Custody Seal: 02.5	
Reinquishe	d By: (2)	Date	Time	Received E	3y:		Data Deliverables Required: COA QC SUMM CLP LIKE OTHER	Ice Present 78 # Stemp: 19 °C	
Relinquishe	d By: (3)	Date	Time	Received E	3y:		Special Instructions:		
Relinquishe	đ By: (4)	Date	Time	Received E	3y:		DW COMPLIANCE? EDD FORMAT TYPE	MD DE PA VA WV OTHER	ë,
6630 Baltim	ore National Pike • R	oute 40 Wes	t - Baltimo	ore, Marvia	and 21226	· (410) 7	747-8770 • (800) 932-9047 • Fax (410)	788-8723	
The client (Cl. the Service B	ent Name), by signing, o	r having client	's agent sign	n, this "Sam	ple Chain c	f Custody/	Agreement Form", agrees to pay for the above	requested services per the latest version	rsion of

INTICAL CHER

Version 1.000

Phase Separation Science, Inc

Sample Receipt Checklist

Work Order #	17041412	Received By	Thomas W	ingate	
Client Name	GTA - Abingdon	Date Received	04/14/2017	′ 12:50:00 PM	
Project Name	37162082		Delivered By	Client	
Project Number	31162082		Tracking No	Not Applicat	ble
Disposal Date Shipping Contai	05/19/2017 ner(s)		Logged In By	Thomas W	ingate
No. of Coolers Custody Seal(s Seal(s) Signed Documentation COC agrees wi Chain of Custod Sample Contain Appropriate for Intact? Labeled and La	1) Intact? / Dated? th sample labels? dy er Specified Analysis? lbels Legible?	N/A N/A Yes Yes Yes Yes	lce Temp (deg (Temp Blank Sampler Na MD DW Cer Custody Sea Seal(s) Sign	Pr C) 19 Present No me <u>Just</u> t. No. <u>N/A</u> al(s) Intact? ad / Dated	resent o t <u>in Valkos</u> Not Applicable Not Applicable
Total No. of Sat Preservation Total Metals Dissolved Meta Orthophosphore Cyanides Sulfide TOC, DOC (fiel TOX, TKN, NHS VOC, BTEX (Ver Do VOA vials h 624 VOC (Rever 524 VOC (Rever	mples Received 3 ls, filtered within 15 minutes of us, filtered within 15 minutes o d filtered), COD, Phenols 3, Total Phos OA Vials Rcvd Preserved) ave zero headspace? d at least one unpreserved VO/ d with trip blanks)	[;] collectio f collectio A vial)	Total No. of (pF n (pF on (pF (pF (pF (pF	Containers I 1<2) 1<2) 1>12) 1>9) 1<2) 1<2) 1<2) 1<2)	Received 6 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

Comments: (Any "No" response must be detailed in the comments section below.)

For any improper preservation conditions, list sample ID, preservative added (reagent ID number) below as well as documentation of any client notification as well as client instructions. Samples for pH, chlorine and dissolved oxygen should be analyzed as soon as possible, preferably in the field at the time of sampling. Samples which require thermal preservation shall be considered acceptable when received at a temperature above freezing to 6°C. Samples that are hand delivered on the day that they are collected may not meet these criteria but shall be considered acceptable if there is evidence that the chilling process has begun such as arrival on ice.

Samples Inspected/Checklist Completed By:

Date: 04/14/2017

PM Review and Approval:

ackson

Lynn Jackson

Thomas Wingate

Date: 04/14/2017

Page 30 of 30

Version 1.000

CRRGP F KZ'M'

Keith Progin

From: Sent:	Barbara Brown -MDE- <barbara.brown1@maryland.gov> Wednesday, May 16, 2018 1:57 PM</barbara.brown1@maryland.gov>
To:	Keith Progin
Cc:	Jennifer Sohns -MDE- (jennifer.sohns@maryland.gov); phaid@tradepointatlantic.com
Subject:	Re: SPT - Northern and Southern Sewer Clean Fill Requests

Hello Keith

The stone material from the Texas and Churchville Quarry as documented in the letters from Martin Marietta is acceptable for use at the Sparrows Point site as clean fill material on either commercial or industrial land use areas.

On Fri, May 11, 2018 at 3:09 PM, Keith Progin <<u>kprogin@hcea.com</u>> wrote:

Please see the attached affidavits for the proposed clean fill to be used during the northern and southern sewer lines. The material comes from Martin Marietta (formerly Blue Grass). Please let me know if this material is suitable.

Thanks!

Keith Progin | Project Manager, Environmental Division

HILLIS-CARNES ENGINEERING ASSOCIATES

Corporate Headquarters 10975 Guilford Road, Suite A Annapolis Junction, MD 20701 Cell (443) 250-9467 Phone +1 (410) 880-4788 X1145 Fax +1 (410) 880-4098 Email <u>kprogin@hcea.com</u>

Website www.hcea.com

LinkedIn in MD * DC * DE * PA * VA * Caribbean 2017 ENR Top 500 Design Firm #375

This message is intended only for the use of the individual or entity to which it is addressed and may contain information that is privileged, confidential and exempt from disclosure under applicable law. If the reader of this message is not the intended recipient, you are hereby notified that any dissemination, distribution or reproduction of this communication is strictly prohibited. If you have received this communication in error, please notify us immediately by telephone or email. Thank you.

--Barbara Brown MDE-LRP-VCP Section Head direct 410 537 3212 general 410 537 3493

<u>Click here</u> to complete a three question customer experience survey.

Maryland Market Area Quality Control Laboratory

May 10, 2018

Churchville Quarry 1219 Calvary Road Bel Air, Maryland 21015

Company: Dixie Construction Attn: DJ Cox

RE: TPA Offsite Sewer

Sir or Ma'am,

This is to certify that ASTM #57 crushed gneiss as produced at our Churchville, Maryland Quarry meets the specifications of the 2008 Maryland State Highway Administration, Table 901 specifications, ASTM C33-93, City of Baltimore Specifications under Article 20.02, and AASHTO M80 Class A requirements. This material also meets VDOT Specifications under Section 203 of the Road and Bridge Specification

. This material complies with other specifications as set forth in the Maryland State Highway Administration and ASTM requirements regarding deleterious substances, abrasion and soundness.

No controlled hazardous substances or oil used in the extraction, production, or loading processes. Therefore, to the best of my knowledge, the material from the Churchville, Maryland facility has not been contaminated by controlled hazardous substance or petroleum products.

The following gradation analysis is based on current production

Sieve Analysis of Coarse Aggregates according to ASTM C136

		ASTM/AASHTO
	% Passing	Specification
Sieve Size	Cumulative	Range
1 1/2"	100.0	100
1"	99.2	95-100
3/4"	85.6	
1/2"	35.9	25-60
3/8"	16.8	
#4 Mesh	3.5	0-10
#8 Mesh	2.0	0-5

Maryland Market Area Quality Control Laboratory

Test Performed	Result	Specification Range	Specification
Dry Loose Unit Weight	93.0 lb/ft ³		ASTM C29
Dry Rodded Unit Weight	104.0 lb/ft ³		ASTM C29
Bulk Specific Gravity (GSB)	3.024		ASTM C127
Bulk Specific Gravity (SSD)	3.037		ASTM C127
Apparent Specific Gravity (GSA)	3.064		ASTM C127
Absorption	0.43		ASTM C127
Los Angeles Abrasion	22.0 %		ASTM C131
Alkali Reactivity	0.02 %		ASTM 1260
Alkali Reactivity 12 month	0.020		ASTM 1293
Sodium Sulfate Soundness	0.2 %		AASHTO T104
Flat & Elongated 3:1	3.99 %		ASTM D4791
Flat & Elongated 5:1	1.43 %		ASTM D4791
Material Finer Than #200	1.2 %		ASTM C117
Estimated Weight	1.35 tons cubic yard		
PH	6.7		

Maryland Market Area Quality Control Laboratory

Chemical Properties of Parent Stone

Chemical	%
Al_2O_3	10.06
CaCO ₃	21.096
Fe ₂ O ₃	9.931
K ₂ O	0.244
MgCO ₃	17.404
MnO	0.187
Na ₂ O	0.151
SiO ₂	35.165
TiO ₂	0.644

Assuring you of our best attention at all times, Sincerely,

Lynn Mchaitz

Lynn McGarity (Parry) Quality Control Manager – Aggregates Maryland Market Area